1.下列函数中为奇函数的是 ( C.
ylnx1
x1).
A.
yx2x B.yexex C.ylnx1
x1 D.
yxsinx
)。
2.设需求量
q对价格
p的函数为
q(p)32p,则需求弹性为Ep(
D.p32p A.p32p B.32ppC32pp D.p32p11x2dx ).
11xA. B.C.dxedx13xdx 1x204.设A为32矩阵,B为23矩阵,则下列运算中( A. AB )可以进行。
3.下列无穷积分收敛的是 (B.A.
D.
1lnxdx
AB
B.
ABC. ABT
D.
BAT
5.线性方程组x1x21解的情况是( D.无解 ).
x1x20
B.只有0解C.有无穷多解 D.x. 1且x0 )
D.x
D.无解
A.有唯一解
1.函数
yx的定义域是 (
lg(x1)
B.
A.
x1 x0 C.x0
x
1且x0
2.下列函数在指定区间(,)上单调增加的是( B.e )。 A.sinx
x
B.eC.
1x2
D.3x exex3.下列定积分中积分值为0的是(A.
12dx ).
xxxx1ee1ee23A.
12dx B.12dxC.(xsinx)dx D.(xcosx)dx
4.设
。 AB为同阶可逆矩阵,则下列等式成立的是( C. (AB)TBTAT )
TA. (AB)ATBT
B.
(ABT)1A1(BT)1C. (AB)TBTAT D. (ABT)1A1(B1)T
5.若线性方程组的增广矩阵为
121,则当=( A. )时线性方程组无解. A2210
B.0 C.1
D.2
A.
1 2
1.下列函数中为偶函数的是(
exexC.y2 ).
exexx1 A.yxx B.yln C.y2x13 D.
yx2sinx
2.设需求量
q对价格p的函数为q(p)32p,则需求弹性为Ep( D.32pp32ppp32p )。
A.p32p B. C. D.p32p 3.下列无穷积分中收敛的是(C.
A.
0edx
x11x2dx ).
11 B.
13xdx C.1x2dx
D.
0sinxdx
4.设A.
A为34矩阵,B为52矩阵, 且乘积矩阵ACTBT有意义,则C为 ( B. 24 ) 矩阵。
B.
42 24 C. 35
D.
53
5.线性方程组x12x21的解的情况是( A.无解 ).
x12x23
B.只有0解 C.有唯一解
D.有无穷多解
A.无解
1.下列函数中为偶函数的是( C.
ylnx1
x1 ).
A.
yx3x
B.
yexex C.ylnp2x1
x1 D.
yxsinx
2.设需求量
q对价格p的函数为q(p)100e,则需求弹性为Ep( A.p 2)。
pp B. C.50p D.50p 221223.下列函数中(B.cosx )是xsinx的原函数.
21122A. B.cosx C.2cosx cosx2
22A. D.2cosx
2121,则r(A)( C. 2 ) 。
014.设A2320A. 0 B. 1 C. 2
D. 3
5.线性方程组11x11. x0的解的情况是( D.有唯一解 )
112
B.有无穷多解 C.只有0解
).
D.有唯一解
A.无解
1..下列画数中为奇函数是(C.
x2sinx
A.ln2.当
x
B.x2cosx C.x2sinx
D.xx2
x1时,变量( D.lnx )为无穷小量。 1sinxxA. B. C.5
x1xx21, x03.若函数f(x),在x0处连续,则k ( B.1 ).
k, x0A. 1 B.1 C.0 D.2
4.在切线斜率为2x的积分曲线族中,通过点(3,5)点的曲线方程是( A.
D.lnx yx24 )
D.
A.
yx24
B.
yx24 C. yx22 yx22
5.设
lnx1lnx,则f(x)( C. ). C2xxlnx1lnxA.lnlnx B. C.
xx2f(x)dx
D.ln2x
1..下列各函数对中,( D.
f(x)sin2xcos2x,g(x)1 )中的两个函数相等.
A.
f(x)(x),g(x)x
2 B.
x21f(x),g(x)x1
x1C.
ylnx2,g(x)2lnx D.f(x)sin2xcos2x,g(x)1
x1,当( A.x0 )时,f(x)为无穷小量。
sinxA.x0 B.x1 C.x 3.若函数f(x)在点x0处可导,则(B.limf(x)A,但Af(x0) )是错误的.
2.已知
f(x) D.
x xx0A.函数
f(x)在点x0处有定义 f(x)在点x0处连续
B.
xx0limf(x)A,但Af(x0)
f(x)在点x0处可微
C.函数 D.函数
4.下列函数中,(D.
1cosx2 )是xsinx2的原函数。 22cosx2 C. 2cosx2
D.
A.
1cosx2 2 B.
1cosx2 25.计算无穷限积分
1A.0
11dx( C. ). 32x11 B. C.
22
D.
二、填空题(每题3分,共15分)
6.函数
x24f(x)x2的定义域是
(,2](2,)
.
7.函数
f(x)11ex的间断点是 x0 .
8.若
f(x)dxF(x)C,则exf(ex)dx
F(ex)c
.
102,当a
39.设Aa0231 0 时,
A是对称矩阵。
x1x2010.若线性方程组有非零解,则
xx0126.函数
-1 。
exexf(x)2的图形关于 原点 对称.
7.已知
f(x)1sinx,当x x 0 时,
f(x)为无穷小量。
8.若
f(x)dxF(x)C,则f(2x3)dx
1F(2x3)c 2 。
.
9.设矩阵
A可逆,B是A的逆矩阵,则当(AT)1=
BT
10.若n元线性方程组
AX0满足r(A)n,则该线性方程组
有非零解 。
6.函数
7.函数
1ln(x5)的定义域是
x21的间断点是 x0 f(x)1exf(x)(5,2)(2,)
。
.
8.若
f(x)dx2x2x2c,则f(x)=
1231232xln24x
.
19.设A2310.设齐次线性方程组
,则r(A)
1 。
A35XO满,且r(A)2,则方程组一般解中自由未知量的个数为
x2
3 。
6.设
f(x1)x22x5,则f(x)=
+4 .
7.若函数
1xsin2,x0在x0处连续,则k= f(x)xk,x02 。
8.若
f(x)dxF(x)c,则f(2x3)dx1/2F(2x-3)+c
n 。
.
9.若A为n阶可逆矩阵,则r(A)1123,则此方程组的一般解中自由未知量的个数为
10210.齐次线性方程组AXO的系数矩阵经初等行变换化为A00000
2 。
1.下列各函数对中,( D )中的两个函数相等.
2.函数
sinx,x0在x0处连续,则k( C.1 )。 f(x)xk,x03.下列定积分中积分值为0的是( A ).
1203,则r(A)( B. 2 ) 。
34.设A00124135.若线性方程组的增广矩阵为
21,则当=( A.1/2 )时该线性方程组无解。 A0124 .
x246.y的定义域是
x27.设某商品的需求函数为q(p)8.若
10ep2,则需求弹性Ep=
.
。
f(x)dxF(x)c,则exf(ex)dx
时,矩阵
9.当
a
13可逆。 A-1a 。
10.已知齐次线性方程组
AXO中A为35矩阵,则r(A)
1.函数
f(x)19x2ln(x3)的定义域是
(-3,-2)(-2,3]
.
2.曲线
f(x)x在点(1,1)处的切线斜率是
1 2
.
3.函数
y3(x1)2的驻点是x
1 .
4.若
f(x)存在且连续,则[df(x)]
3
f(x)
.
5.微分方程(y)4xy(4)y7sinx的阶数为
4 。
1.函数
x2, 5x0的定义域是 f(x)2x1, 0x2xsinx
x
0
.
[5,2)
.
2.limx03.已知需求函数q202p,其中p为价格,则需求弹性Ep 33
p
p10.
4.若
f(x)存在且连续,则[df(x)]
f(x)
.
5.计算积分
11(xcosx1)dx
2 。
三、微积分计算题(每小题10分,共20分) 11.设
y3xcos5x,求dy.
12.计算定积分
e1xlnxdx.
11.设
ycosxln2x,求dy.
12.计算定积分
ln30ex(1ex)2dx.
1.计算极限limx2x12x4x25x4。
2.设
ysinxx1x,求y。 3.计算不定积分
(2x1)10dx.
4.计算不定积分
elnx1x2dx。
四、线性代数计算题(每小题15分,共30分)
13.设矩阵A100101,B01,求(BT2A)1。
112
14.求齐次线性方程组
x12x2 x42x1x23x32x40的一般解。 2xx5x3x03412
11.设
ycosxln3x,求y.
12.计算不定积分
lnxxdx.
四、线性代数计算题(每小题15分,共30分)
01325,I是3阶单位矩阵,求(IA)1B。
113.设矩阵A227,B034830
14.求线性方程组
x13x22x3x423x8x4xx01234的一般解。 2x1x24x32x41x12x26x3x4211.设
yexlncosx,求dy.
12.计算不定积分
e1xlnxdx.
四、线性代数计算题(每小题15分,共30分)
13.设矩阵A010201100,i010,求(IA)1。341001
x1x2+2x3x4014.求齐次线性方程组
x13x32x40的一般解。 2x1x25x33x40111.设
yex5x,求dy.
12.计算
20xcosxdx.
四、线性代数计算题(每小题15分,共30分)
13.已知AXB,其中A1221102。
,B1,求X1351
x12x2+x3014.讨论
为何值时,齐次线性方程组
2x15x2x30有非零解,并求其一般解。 x1x213x30
1.计算极限limx25x6x2x26x8。
cosx,求dy。 xx3.计算不定积分
cos2xdx.
2.已知
y2x4.计算定积分
e311dx。
x1lnx
五、应用题(本题20分)
15.某厂生产某种产品的总成本为
C(x)3x(万元),其中
x为产量,单位:百吨。边际收入为
R(x)152x(万元/百吨),求:
(1)利润最大时的产量?
(2)从利润最大时的产量再生产1百吨,利润有什么变化?
15.已知某产品的边际成本C(x)2(元/件),固定成本为0,边际收益R(x)120.02x,问产量为多少时利润最大?在最
大利润产量的基础上再生产50件,利润将会发生什么变化?
15.某厂生产某种产品产
量
为
多
,单位销售价格为p140.01q(元/件),问q件时的总成本函数为C(q)204q0.01q2(元)少
时
可
使
利
润
最
大
?
最
大
利
润
是
多
少
?
15.投产某产品的固定成本为36(万元),且产量x(百台)时的边际成本为C(x)百
台
时
总
成
本
的
增
量
,
及
产
量
为
多
少
时
,
,试求产量由4百台增至62x60(万元/百台)可
使
平
均
成
本
达
到
最
低
。
15.设生产某种产品q个单位时的成本函数为: 成
本
;
(
2
)
当
产
C(q)1000.25q26q (万元),求:(1)当q=10时的总成本、平均成本和边际
量
q
为
多
少
时
,
平
均
成
本
最
小
?
五、应用题(本题20分)
15.已知某产品的边际成本C'(q) =2(元/件),固定成本为0,边际收入R' (q) =12一0.02q(元/件) ,求: (1)产量为多少时利润最大? (2)
在
最
大
利
润
产
量
的
基
础
上
再
生
产
50
件
,
利
润
将
发
生
什
么
变
化
?
已知某产品的销售价格p(元/件)是销售量q(件)的函数
p400q,而总成本为C(q)100q1500(元),假设生产2的产品全部售出,求(1)产量为多少时利润最大? (2) 最大利润是多少?
已知某产品的边际成本为C(q),q为产量(百台),固定成本为18(万元),求最低平均成本。 4q3(万元/百台)
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- jqkq.cn 版权所有 赣ICP备2024042794号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务