您好,欢迎来到吉趣旅游网。
搜索
您的当前位置:首页常见级数求和

常见级数求和

来源:吉趣旅游网


黎凯,以下是常见级数求和公式,你自己可以琢磨下怎么得来的,这个公式在数学手册上面有,你可以去查阅下,希望你把更多时间放在基础知识的学习掌握上。祝健康快乐! ——SHI YH

123n12n(n1);122232n216n(n1)(2n1)

132333n314n2(n1)2 ;142434n4130n(n1)(2n1)(3n23n1)

152535n5112n2(n1)2(2n22n1);

162636n6142n(n1)(2n1)(3n46n33n1) 172737n7124n2(n1)2(3n46n3n24n2)

123(1)n12(n1),n为奇数n1n2,n为偶数

122232(1)n1n2(1)n112n(n1)

1(2132333(1)n1n342n1)(n1),n为奇数14n2(2n3),n为偶数

142434(1)n1n4(1)n112n(n1)(n2n1)

施烨辉 整理打印 来自《数学手册》人教版 2008-10-12

1/2

2462nn(n1)

135(2n1)n2

123252(2n1)213n(4n21)

133353(2n1)3n2(2n21)

122334n(n1)13n(n1)(n2)

123234345n(n1)(n2)14n(n1)(n2)(n3)

12342345n(n1)(n2)(n3)15n(n1)(n2)(n3)(n4)

nj(j1)(jk)1(nk1)!j1k2(n1)!

nj(j1)21j112n(n1)(n2)(3n5)

nj(j1)2(j2)110n(n1)(n2)(n3)(2n3)j1

nj(n2j2)1j14n2(n21)

n2jj(j1)2n1(n2n2)4j1

施烨辉 整理打印 来自《数学手册》人教版 2008-10-12

2/2

1121231341n(n1)11n1nn1

111111123234345n(n1)(n2)42(n1)(n2)

1123412345134561n(n1)(n2)(n3)11813(n1)(n2)(n3)

n1nj123412n12(n1)n1n2(j1)(j1)j2j1; j1)(2j1)j1(22n1;

n1n)nj1(3j2)(3j13n1;

11j1(2j1)(2j1)(2j3)1214(2n1)(2n3)

n111n2j1321j1(3j2)(3j1)(3j4)246(3n1)(3n4); j1j(j1)(j2)4n22(n1)(n2)

nj22913j1j(j1)(j3)36n32(n2)(n3)43(n1)(n2)(n3)

nj2j1nj24j2(n1)4n1n2nn212;j2j11j1(j1)(j2) j1(j1)(j2)33(n2); j1j(j1)2(n1)2n

n2j3j1n(1)j12j1(1)n1j(j1)3j11(n1)3n;

j1[2j(1)j][2j1(1)j1]312n1(1)n1

nb(b1)(bj1)1b(b1)(bn)j1a(a1)(aj1)ba1a(a1)(an1)b

施烨辉 整理打印 来自《数学手册》人教版 2008-10-12

3/2

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- jqkq.cn 版权所有 赣ICP备2024042794号-4

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务