ContentslistsavailableatScienceDirect
EnergyandBuildings
journalhomepage:www.elsevier.com/locate/enbuild
EvaluationofaturbinedrivenCCHPsystemforlargeofficebuildingsunderdifferentoperatingstrategies
PedroJ.Mago∗,AnnaK.Hueffed
DepartmentofMechanicalEngineering,MississippiStateUniversity,210CarpenterEngineeringBuilding,P.O.BoxME,MississippiState,MS39762-5925
articleinfoabstract
Combinedcooling,heating,andpower(CCHP)systemsusewasteheatfromon-siteelectricitygenerationtomeetthethermaldemandofthefacility.ThispapermodelsaCCHPsystemforalargeofficebuildingandexaminesitsprimaryenergyconsumption(PEC),operationalcosts,andcarbondioxideemissions(CDE)withrespecttoareferencebuildingusingconventionaltechnologies.Theprimemoverusedinthisinvestigationisaloadshareturbine,andtheCCHPsystemisevaluatedunderthreedifferentoperationstrategies:followingtheelectricdemandofthefacility,followingthethermaldemandofthefacility,andfollowingaseasonalstrategy.Forthevariousstrategies,thepercentagesoftotalcarbondioxideemissionsbysourcearepresented.ThispaperexplorestheuseofcarboncreditstoshowhowthereductionincarbondioxideemissionsthatispossiblefromtheCCHPsystemcouldtranslateintoeconomicbenefits.Inaddition,thecapitalcostsavailablefortheCCHPsystemaredeterminedusingthesimplepaybackperiod.ResultsindicatethatfortheevaluatedofficebuildinglocatedinChicagotheCCHPoperationreducestheoperationalcost,PEC,andCDEfromthereferencebuildingbyanaverageof2.6%,12.1%,and40.6%,respectively,forallthedifferentoperationalstrategies.
©2010ElsevierB.V.Allrightsreserved.
Articlehistory:
Received19February2010
Receivedinrevisedform7April2010Accepted19April2010Keywords:CCHP
PrimaryenergyreductionCarbondioxideemissionsTrigenerationCarboncredits
1.Introduction
Combinedcooling,heatingandpower(CCHP)istheproductionofpower(electricalormechanical)andusableheatfromasinglefuelsource.Oftenidentifiedastrigeneration,CCHPisabroadtermreferringtoasetofintegratedtechnologiessuchasturbines,recip-rocatingengines,microturbines,fuelcells,heatpumps,thermallyactivatedtechnologies,and/orwasteheatrecoverytechnologiesthatcanbeimplementedindifferentconfigurationstosuitdif-ferentneeds.Thermallyactivatedtechnologiestransformthermalenergyintousefulheating,cooling,humiditycontrol,thermalstor-age,andshaft/electricalpower.CCHPsystemshavethepotentialforhigherthermalefficiencyovertheseparateproductionofpowerandheat;therefore,lessfuelisconsumedforthesameoutput,therebyreducinggreenhousegasemissionsandloweringopera-tionalcosts.Theheatgeneratedasaby-productfromtraditional,centralizedpowergenerationistypicallylosttotheatmospherethroughcoolingtowers,fluegas,orothermeans.Overtwo-thirdsofallthefuelusedtogeneratepowerintheU.S.islostasheat.Byplacingthepowerproductionatornearthesiteofconsumption,a
Abbreviations:CHP,combinedheatingandpower;CCHP,combinedcooling,heating,andpower;PGU,powergenerationunit(primemover);REF,referencebuilding(noCCHPsystem).
∗Correspondingauthor.Tel.:+6623256602;fax:+6623257223.E-mailaddress:mago@me.msstate.edu(P.J.Mago).0378-7788/$–seefrontmatter©2010ElsevierB.V.Allrightsreserved.doi:10.1016/j.enbuild.2010.04.005
formofdistributedgeneration,CCHPsystemscanusethewould-bewasteheattosatisfysomeorallofthefacility’sthermaldemand.Distributedgenerationalsoeliminatestransmissionanddistribu-tionlossesassociatedwithdeliveringelectricityfromthepowerplanttotheuser.
ThesizesandapplicationsofCCHPsystemsvarytoaconsid-erabledegree,ranginginsizefromafewkilowattstomegawattsofpowerproduction,withapplicationstoresidential,commercial,industrial,orlarge-scaledistrictenergysystems.Ingeneral,CCHPsystemsareusuallyoperatedusingtwobasicstrategies:follow-ingtheelectricload(FEL)andfollowingthethermalload(FTL).TheCCHPoperationstrategywilldictatetheloadingandfuelcon-sumptionoftheprimemoverandthustheenergyconsumptionprofileoftheCCHPsystem.InthecaseofFELoperationstrategy,theprimemoverisloadedinordertosatisfytheelectricdemandofthefacilitythroughthegenerator.Theprimemoverandgeneratorformthepowergenerationunit.Thewasteheatfromthisloadingisthenrecoveredinordertosatisfythethermalloadofthefacil-ity.Forthisoperationstrategy,iftherecoveredthermalenergyisnotenoughtohandlethethermalload(coolingorheating)ofthefacility,additionalheathastobeprovidedbytheauxiliaryboileroftheCCHPsystem.FortheFTLstrategy,theprimemoverisloadedsuchthattherecoveredwasteheatwillbeadequatetosupplythefacilitywiththenecessarythermalenergytosatisfytheheatingandcoolingrequirements.Forthisoperatingstrategytheamountofelectricityproducedmayormaynotbeenoughtoprovidetheelectricityrequiredbythebuilding.Therefore,iftheelectricitypro-
P.J.Mago,A.K.Hueffed/EnergyandBuildings42(2010)1628–16361629
Nomenclature
VariablesCCcarboncreditvalueCDEecarbondioxideemissionfactorfordeliveredelec-tricity
CDEelectricitycarbondioxideemissionsfordeliveredelectric-ity
CDEfuel-onsite-boilerboileron-sitecarbondioxideemissions
resultingfromfuelcombustion
CDEfuel-onsite-pguPGUon-sitecarbondioxideemissionsresult-ingfromfuelcombustion
CDEfuel-pre-combustionpre-combustioncarbondioxideemis-sionsforfueldeliver
CDEng-onsite-boilercarbondioxideemissionfactorforon-site
naturalgascombustioninaboiler
CDEng-onsite-pgucarbondioxideemissionfactorforon-site
naturalgascombustioninPGU
CDEng-pre-combustioncarbondioxideemissionfactorfornatural
gasdelivery
Costoperationoperationalcost(withoutpurchasingcarbon
credits)
Costtotalcosttooperatefacility(includespurchasingcarbon
creditstooffsetemissions)
Eelectricity
Epgu◦nominalPGUloadEreqtotalelectricityrequiredbyofficebuildingFfuelinputLRloadratioQboilerheatproducedbytheboilerQccoolingloadofofficeQchheatneededtooperateabsorptionchiller(=Qc/Ách)
Qh
heatingloadofofficeQhcheatneededtorunheatingcoil(=Qh/Áhc)
Qhw
hotwaterloadofofficeQhwsheatrequiredtorunhotwatersystem(=Qwh/Áhws)
Qrec
heatrecoveredfromthePGUexhaustQreqtotalheatrequiredbybuildingGreekÁthermalefficiency
cost
differenceincapitalcostsoftheCCHPsystemandreferencebuilding
Subscriptsboilerboilerchabsorptionchillereelectricityequipmentequipmentexportexportfanfanhcheatingcoilhwshotwatersystemgridgridlightslightsngnaturalgaspgupowergenerationunitrecrecoveredrefreferencebuildingreqrequired
ducedisnotenoughtohandletheelectricloadadditionalelectricity
hastobeimportedfromthegrid.SomeresearcherssuchasCardonaandPiacentino[1,2],Jalalzadeh-Azar[3],Magoetal.[4],andMagoandChamra[5]amongothershaveinvestigatedtheoperationofCCHPsystemsunderthesetwooperationstrategies.CardonaandPiacentino[1]refertothesetwostrategiesasElectricDemandMan-agementandThermalDemandManagement.Theyconcludedthattheuseofthetwostrategiesdependsonseveralfactorssuchas:theloadingoftheprimemoverandtheabilitytosellbackelectricitytothegridorstoreitonsiteforlateruse.Inaddition,thepriceoffuelversusthatofelectricitypurchasedfromatraditionalsourcecanaffectthemanagementofaplant[2].Jalalzadeh-Azar[3]performedananalysisofenergycostandprimaryenergyconsumptionofCCHPsystemsoperatingunderFELandFTLstrategieswhileutilizingagasfiredmicroturbineindifferentclimates.Theresultsyieldedan11%reductionintotalenergyconsumptionwhentheCCHPoperatesaccordingtoFTLversusthatofFEL.Magoetal.[4]comparedFELandFTLstrategiesforbothCHPandCCHPsystemsthatusedaninternalcombustionengineastheprimemoverforasmallofficebuilding(140m2)infourdifferentclimateregions.Comparisonsweremadebasedonprimaryenergyconsumption(PEC),cost,andcarbondioxideemissions(CDE).Anationalaverageprimaryenergyconsumptionfactorforelectricitywasusedtodeterminethepri-maryenergyconsumption,costwasfiguredfromasingleflatrateforbothelectricityandnaturalgas,andthecalculatedcarbondiox-ideemissionsdependedontheregionalmixoffuelusedtoproducegridelectricity.Magoetal.[4]foundthat,ingeneral,FTLperformedbetterthanFEL.Inanotherstudy,MagoandChamra[5]optimizedCCHPsystemsthatwereoperatingunderFELandFTLstrategiesbasedonenergy,cost,andemissions.Inaddition,theyevaluatedanoptimizedoperationalstrategyinwhichaCCHPsystemfollowsahybridelectric–thermalloadstrategy(HETS).MagoandChamra[5]reportedthattheHETSisagoodalternativeforoperationofCCHPsystemssinceityieldedgoodreductionsofPEC,cost,andCDE.
Inadditiontothebasicoperationstrategies(FELandFTL),thispaperalsoevaluatesoperationoftheCCHPsystemfollowingasea-sonalstrategy(FSS).Foreachmonthunderthisstrategy,theCCHPsystemwilloperatetoeitherFELorFTLdependingonthemonthlyelectric-to-thermalloadratio.
Ingeneral,mostoftheinvestigationsmentionedaboveusedanaturalgasinternalcombustionengineastheprimemover.How-ever,otherresearchershaveinvestigatedtheuseofaturbineprimemoverforCCHPapplications.SavolaandKeppo[6]modeledfourexistingsteamturbineCHPsystems(1–20MWe)operatingatpartload.Theyfoundthatalthoughthepartloadpowerproductioncanbedescribedquiteaccuratelywithasingleline,thereisasmallnonlinearreductioninthepowerproductionastheheatloaddecreases.Kongetal.[7]presentedasimplelinearprogrammingmodeltodeterminetheoptimalstrategiesthatminimizetheover-allcostofenergyfortheCCHPsystem.Theenergysystemconsistsofagasturbine,anabsorptionchillerandaheatrecoveryboiler.Theydemonstratedthattheoptimalsystemoperationisdependentupontheloadconditionsbeingsatisfied.Theyalsoreportedthatforthecaseofalowelectrictogascostratioitmaynotbeoptimaltooperatetheturbine.Khanetal.[8]presentedanovelcoolingandpowercyclethatcombinesasemi-closedgasturbinecyclewithavaporabsorptionrefrigerationsystemforpower,waterextrac-tion,andrefrigeration.Thecombinedcycleefficiencywasfoundtobe44%.Colomboetal.[9]presentedanddiscussedtheresultsofanexperimentalinvestigationofamicroturbinecogenerationplant.ExperimentaltestswererunonaTurbecT100-CHPmicrotur-bineunitwhilevaryingtheelectricalpoweroutputbetween50and110kWandforwatertemperaturesattherecuperatoroutletrang-ingfrom60to80◦C.Theyreportedthattheperformanceremainsessentiallyconstantintherangeof80–110kWwhileamoderate
1630P.J.Mago,A.K.Hueffed/EnergyandBuildings42(2010)1628–1636
decreaseisobservedfrom50kWuntilabout60kW.EhyaeiandMozafari[10]studiedtheoptimizationofmicroturbineapplica-tionstomeettheelectrical,heating,andcoolingloadsofabuildingthroughanenergy,economics,andenvironmentalanalysis.Theyevaluatedthreedifferentscenarios:agasmicroturbinetomeettheelectricalpowerdemandofthebuilding;agasmicroturbinetomeettheelectricalpowerdemandofthebuildingaswellasthepowerrequiredbyaheatpumpandamechanicalrefrigerator;andagasmicroturbineforCHPtomeettheelectricalpowerofthebuildingaswellaspartofthepowerrequiredbyheatpumpandmechanicalrefrigerator.Theyconcludedthatthenumberoftur-bineunitsandelectricitycostarehighlydependentonelectricityconsumptionmanagement.
ThispapermodelsaCCHPsystemforalargeofficebuildingandexaminesitsenergyconsumption,operationalcosts,andcarbondioxideemissionswithrespecttoareferencebuildingusingcon-ventionaltechnologies.TheprimemoverusedinthisinvestigationisaloadshareturbineandtheCCHPsystemisevaluatedunderthreedifferentoperationstrategies:followingtheelectricloadofthefacility,followingthethermalloadofthefacility,orfollowingaseasonalstrategy.Anotherobjectiveofthispaperistodeterminethepercentageofemissionsgeneratedfromthedeliveredelectric-ityandtheon-siteelectricityproductionandshowhowreductionsincarbondioxideemissionsthatcouldbeobtainedfromtheopera-tionoftheCCHPsystemcouldbetranslatedintoeconomicbenefitsusingcarboncredits.WhileseveralCCHPandCHPmodelsandopti-mizationschemesavailableintheliteratureuseconstantelectricityandnaturalgaspricesineconomiccalculations[11–16],thecurrentinvestigationconsidersrealelectricityandnaturalgasratesfortheevaluatedcity.ThisisaccomplishedbysimulatingtheCCHPsysteminthecityofChicagowhichincorporatesblockchargesanddemandchargesintheirutilityschedule.ActualmonthlygasratesforIllinoiswerealsoemployedtoaccountforthevariationsingasratesacrosslocationsandfluctuationsinpricesthroughouttheyear.Finally,foragivenpaybackperiodandoperationalcostsavingsoftheCCHPsystem,thecapitalcostavailabletoinvestintheCCHPsystemisdetermined.
2.Carboncredits
Thepurposeofcarboncreditsistocreateeconomicvaluefromdefinedenvironmentalbenefitssuchasthereductionofgreen-housegas(GHG)emissions,whichincludecarbondioxide(CO2),methane(CH4),nitrousoxide(N2O),sulfurhexafluoride(SF6),perfluorocarbons(PFCs),andhydrofluorocarbons(HFCs).Whencomparedtoaconventionalbuilding,theuseofaCCHPsystemcanreducetheamountofemissionsandthereforegainsomeeco-nomicbenefitsusingcarboncredits.OneofthemethodologiessuggestedtoaddressGHGemissionsisamarket-based“capandtrade”system.Basically,forcompaniesandindustriesthatsig-nificantlycontributetoGHGemissions,directemitters,acaporlimitisplacedontheamountofallowableemissions.Thesecom-paniesorindustriesmustreducetheiremissionstoalevelequaltoorbelowthecap.Iftheiremissionsarebelowthetargettheyareissuedcredits.Thosewhocannotmeetthecapmustpur-chasecredits,thusbringingtheiremissionsintocompliancewiththecap.Inadditiontodirectemitters,indirectemitterssuchasoffice-basedbusinessesorindustriesgenerateemissionsindirectlythroughtheconsumptionofelectricityandotherrelatedactivities.Thesetypesofcompaniesmustoffset100%oftheiremissionsbypurchasingcredits.Thisensuresthattheatmosphericburdenofgreenhousegases(GHGs)isnotincreasedbytheentity’sindirectactivities.Forexample,thissystemisusedontheChicagoClimateExchange(CCX),whichiscurrentlyavoluntarybutlegallybind-ingcommitmentforitsmembers[17].Forthelargeofficebuilding
Fig.1.Electric,cooling,heating,andhotwaterloadsfortheevaluatedlargeofficebuildinglocatedinChicago.
inthisinvestigation,onlycarbondioxideemissionsareconsid-ered.Tooffsetcarbondioxideemissions“carboncredits”mustbepurchased,whicharetypicallypricedindollarspermetrictonofCO2-equivalent.3.Referencebuilding
SeveralcommercialbuildingbenchmarkmodelshavebeendevelopedbytheU.S.DepartmentofEnergy.Themainbenefitofthestandardizedbenchmarkmodelsisthattheyformacom-monpointofcomparisonbetweenresearchprojects[18].Sixteentypesofcommercialbuildings(small,medium,andlargeoffices,hotels,hospitals,etc.)insixteendifferentlocationsacrossthreevin-tages(new,pre-1980,andpost-1980construction)weredevelopedandmodeled[19]usingEnergyPlussoftware[20].Thesebuildingsrepresentapproximately70%ofthecommercialbuildingsintheU.S.[21].Thisstudyfocusesonanewlargeofficebuildingwith460,240ft2offloorareaand12floorsplusabasementthatislocatedinChicago,IL.Thereferencebenchmarkbuildingusesanelectricchillerunitforcoolingandaboilerforheating.TheCOPoftheelec-tricchillerunitis5.5andtheoverallheatingefficiencyis78%.Theairdistributionisthroughamulti-zonevariableairvolumesystem.Themonthlyelectric,thermal,andhotwaterloadsforthereferencebuildingarepresentedinFig.1.Inthebenchmarkmodels,elec-tricityimportedfromthegridisusedforlights,equipment,andHVACcomponents.Inaddition,naturalgasissuppliedtoaboilertosatisfytheheatingandhotwaterloadsofthebuildings.Inthisstudy,thelargeofficebenchmarkbuildingwassimulatedinEner-gyPlusandusedasthereferencecase.Fromthesimulationresultsthebuilding’selectric,cooling,heating,andhotwaterloadsweredeterminedandusedfortheCCHPsystemanalysis.4.CCHPsystemmodels
ThissectionpresentstheequationsusedtomodeltheCCHPsystem.TheschematicofthemodeledCCHPsystemispresentedinFig.2.Fromthisfigureitcanbeseenthatfuelissuppliedtothepowergenerationunit(PGU)toproduceelectricityneededbythebuilding(lights,equipments,andHVACfans).Thewasteheatisrecoveredandusedtoproducecoolingthroughanabsorptionchiller,heatingthroughaheatingcoil,orhotwater.ThissectionfirstdiscussesthebasicoperationalstrategiesoftheCCHPsystem,suchasfollowingtheelectricload(FEL)andfollowingthethermalload(FTL).Inaddition,aseasonaloperationstrategy(FSS)ispre-sentedinwhichthesystemfollowseithertheelectricloadorthethermalloaddependingonthemonthlyelectric-to-thermalloadratio.
Foralltheoperationalstrategies,theelectricitythatmustbesuppliedtothebuildingbytheCCHPsystemand/orthegridfor
P.J.Mago,A.K.Hueffed/EnergyandBuildings42(2010)1628–16361631
Fig.2.SchematicoftheCCHPsystemusedinthisinvestigation.
eachhouris
Ereq=Elights+Eequipment+Efans
(1)
Fig.3.Performancecurves:(a)efficiencyversuspowerforashareloadturbine(adaptedfrom[22])and(b)boilerefficiencyasfunctionofairandfuelinput(adaptedfrom[23]).
whereElights,EequipmentandEfansaretheelectricityrequiredbythelights,equipment,andfans,respectively.Similarly,theheatthatmustbeprovidedbytheCCHPsystem(recoveredfromthePGUexhaust)and/ortheboilerforeachhourisQreq=Qhc+Qch+Qhws
(2)
whereQhc,Qc,andQhwsaretheheatrequiredbytheheatingcoil,absorptionchiller,andhotwatersystem,respectively.TheheatrequiredbytheheatingcoiltohandletheheatingloadisestimatedasQhc
Q=h
Áhc
(3)
ofthePGU,Epgu◦,islessthanthatrequiredbytheofficebuilding,electricitymustbeimportedfromthegrid;Therefore,
Egrid=
Ereq−Epgu◦0ifEreq>Epgu◦otherwise
(6)
ThePGUfuelenergyconsumption,FpgucanbeestimatedasFpgu=
EpguÁpgu
(7)
whereQhisthebuildingheatingloadandÁhcistheheatingcoilefficiency.TheheatrequiredbytheabsorptionchillertohandlethecoolingloadisestimatedasQch=
QcCOPc
(4)
whereÁpguisthePGUthermalefficiency.Asmentionedbefore,thePGUselectedforthispaperisaloadshareturbine.ThethermalefficiencyofthisturbineispresentedinFig.3(a)andmodeledusingthefollowingcurvefitdata
Ápgu=
⎧4
3+cE2+dEaEpgu+bEpgupgu+eif0 if400kW aEpgu+bEpgu+c whereQcisthebuildingthermalcoolingloadandCOPcisthe absorptionchillercoefficientofperformance.Similarly,theheatrequiredbythehotwatersystemisQhws= QhwÁhws (5) Therecoveredwasteheatfromtheprimemover,Qrec,canbeestimatedasthedifferencebetweenthePGUfuelenergyconsump-tionandthePGUelectricenergytimestheheatrecoverysystemefficiency,Árec,asfollowsQrec=Árec(Fpgu−Epgu) (9) whereQhwisthehotwaterloadandÁhwsisthehotwatersystemefficiency. 4.1.CCHPsystemmodelfollowingtheelectricload(CCHP-FEL)FortheCCHPsystemfollowingtheelectricload,thePGUelec-tricoutput,Epgu,willtrytomatchtherequiredelectricdemandofthebuilding,suchthatEpgu=Ereq.Ifthenominalelectricoutput TheCCHPsystemhastomeetthebuilding’sthermaldemandatanyspecifichourduringitsoperation.Therefore,iftherecoveredthermalenergyisnotenoughtohandlethethermalload(cooling,heating,orhotwater)additionalheathastobeprovidedbytheauxiliaryboileroftheCCHPsystem.Therefore, Qboiler= Qreq−Qrec0ifQreq>Qrecotherwise (10) 1632P.J.Mago,A.K.Hueffed/EnergyandBuildings42(2010)1628–1636 TheboilerfuelenergyconsumptioniscomputedasFboiler= QboilerÁboiler (11) 4.3.CCHPsystemfollowingtheseasonaloperationstrategy(CCHP-FSS) TheseasonaloperationstrategyconsistsofoperatingtheCCHPbasedonaparametercalledtheloadratio(LR)thatisdefinedas:LR= monthlyelectricloadmonthlythermalload (20) whereÁboileristheboilerthermalefficiency,whichisrepresentedbyFig.3(b)andmodeledusingthefollowingcurvefitdataÁboiler=Ax2+Bx+C (12) wherexisthepercentinputoffuelandair,andA,B,andCareconstants.ThefuelenergyconsumptionregisteredatthemeterisestimatedasFm=Fpgu+Fboiler 4.2.CCHPsystemmodelfollowingthethermalload(CCHP-FTL) (13) Then,ifLR>1theCCHPsystemoperatesfollowingtheelectricload(FEL)duringthatmonthandifLR<1thesystemoperatesfol-lowingthethermalload(FTL)duringthatmonth.Accordingly,theequationspresentedinSections4.2and4.3areusedtomodeltheCCHPsystem’soperation. 5.CCHPsystemperformancemetrics Forthisoperationstrategythetotalheatthatmustberecov-eredfromthePGUwilltrytomatchthethermalenergyrequiredtohandlethecoolingorheatingload.Therefore,Qrec=Qreq=Qhc+Qch+Qhws (14) ForagivenoperationalstrategytheperformanceoftheCCHPsystemwasevaluatedbycomparingtheannualoperationalcost,primaryenergyconsumption(PEC),andcarbondioxideemissions(CDE)tothereferencecase.5.1.Operationalcost Todeterminethetheoperationalcostsactualpricedatawasused.Fornaturalgas,historicalmonthlyaveragesforthestateofIllinoiswereused.Thisaccountsformonth-to-monthpricefluc-tuationsalongwithgeographiclocation.TheutilityratesforthecityofChicagoweretakenfromtheEnergyPlusinputfileforthebenchmarkmodel.Informationaboutsellingelectricitybacktothegridwasunavailable,soassumptionsweremadeastohowtopriceexportedelectricity.Theseutilityratesareforamonthlybillingcycleandincludebaseratesandblockcharges.Therearetwosetsofblockcharges,oneisbasedontotalenergyconsumptionandtheotherincorporatesdemandusage.Energychargesmakeupthebaseofeachmonthlyutilitybill,wheretheenergychargerate($/kWh)ismultipliedbytheelectricityconsumedfromthegridforthatmonth.Forexportedelectricity,thecustomerwouldreceivehalftherateofpurchasedelectricity,sotheenergychargesarecomputedasfollows EnergyCharges=Egridre−Eexport0.5re (21) Sincetherecoveredwasteheatfromtheprimemoverisknown,thefuelenergycanbeestimatedasFpgu= Qrec Árec(1−Ápgu) (15) wherethevalueforQreccannotexceedthemaximumamountofrecoverableheat(theheatrecoveredwhileoperatingatthenomi-nalload).ThetotalelectricenergysuppliedbythePGUisEpgu=FpguÁpgu (16) whereÁpguisdefinedbyEq.(8).Sincethesystemisfollowingthethermalload,theamountofelectricityproducedmayormaynotbeenoughtoprovidetheelectricityrequiredbythebuildingortheremightbemorethanenoughproducedelectricity.Therefore, Egrid=Eexport= Ereq−Epgu0 Epgu−Ereq0 ifEreq>Epguotherwise (17) ifEpgu>Ereqotherwise (18) whereEgridistheamountofelectricityrequiredfromthegridandEexportistheamountofexcesselectricitythatcanbeexportedorstoredforfutureuse.Ifthemaximumwasteheatthatcanberecov-eredfromthePGUislessthanthatrequiredbytheofficebuilding,theboilerhastosupplytheadditionalheat.Therefore, Qboiler= Qreq−Qrec0ifQreq>Qrecotherwise (19) ThefuelenergyconsumedbytheboilerandthemeteredfuelcanbedeterminedusingEqs.(11)and(13).Forthisoperationalmode,thesystemmayhaveexcesselectricitythatcouldbestoredorsoldbacktothegrid.However,theseoptionsarenotavailableinalllocations. Table1 Chicagocostdata[24]. A Size(kWh) Block1Block2Block3Block4 Energycharges,re($/kWh)Monthlycharge($)Taxes,t(%) 3007001500 Remaining0.004359.48 wherereistheenergychargerateforelectricityin($/kWh),listedinTable1forChicago.UsingthepricingdatainTable1tocalcu-latetheBlockAchargesforChicagoa“net”gridconsumptionofEgrid−0.5×Eexportisfirstdeterminedforthemonth.Fromthis,thefirst300kWhusedisbilledatBlock1’scost,thenext700kWhatBlock2’scost,thenext1500kWhatBlock3’scost,andtheremainingnetgridconsumptionisbilledatBlock4’scost.ThesameprocedureisfollowedforBlockBchargesexceptthesizeofeachblockismultipliedbythemonth’sdemand.Themonthlysubtotalcanthenbecomputedaccordingto Subtotal=EnergyCharges+BlockChargesA+BlockChargesB (22) B Cost($/kWh)0.0824090.0728730.0616960.041179 Sizeperdemand190110 Remaining Cost($/kW)0 0.0517730.046965 P.J.Mago,A.K.Hueffed/EnergyandBuildings42(2010)1628–1636 Table2 PECandCDEfactorsforthecityofChicago[24]. PECfactor(kWh/kWh) CDEfactor(g/MJ) CDEfactorpre-comb(g/MJ) CDEFactoron-site(g/MJ)PGU–smallturbine ElectricityNaturalGas 3.61.092 341.7– –4.85 – 50.97 1633 Commercialboiler–50.97 andthetotalmonthlycostforelectricityisCoste=(Subtotal+MonthlyCharge)(1+t) (23) wheretisthetaxratewhichwastakentobe2%abovetheloca-tion’ssalestaxrate[19]andthemonthlychargeisafixedpriceforconnectiontothegrid. ThemonthlycostofnaturalgasisCostng=(Fpgu+Fboiler)(rng)(1+t) (24) whererngisthemonthlypriceofnaturalgas($/kWh)andthefuelconsumption,Fpgu+Fboiler,isforthegivenmonth.Offsettingcar-bondioxideemissionsthroughthepurchaseofcreditsaddstotheyearlyoperationalcosts,Costoperation,whichisthesummationofthemonthlyelectricitycostandthemonthlynaturalgascostforeachmonthoftheyear.Therefore,thetotalcostisCosttotal=Costoperation+CDE×CC (25) whereCCisthecarboncreditvaluein$/metrictonofCO2-equivalentandCDEaretheannualcarbondioxideemissions.IfcarbondioxideemissionsareoffsetbypurchasingcarboncreditsthedirectsavingsduetotheoperationoftheCCHPsystemreducingemissionsare SavingsCCHP-carbon=(CDEref−CDECCHP)CC(26) 5.2.PECandCDE Primaryenergy(sometimescalledsourceenergy)allowscom-parisonamongbuildingsthatusedifferentsourcesofenergyandbetterreflectsthebuilding’sresourceconsumption.Itincludesenergyconsumedonsite,theamountofenergymeasuredbythemeter,pluslossesfromproduction,transmission,anddelivery.Forthelargeofficebuilding,therearetwometeredenergysources:gridelectricityandfuel.Todetermineprimaryenergyconsumption,PECconversionfactorsaremultipliedbytheamountofenergyused.Forexample,theelectricityconversionfactorconvertsthesiteelectric-ityfromthegridtotherawfuelusedbythepowerplant.Giventhis,thePECofthebuildingoperatingtheCCHPsystemiscalculatedinthefollowingmanner PEC=(Egrid−Eexport)PECe+(Fpgu+Fboiler)PECng (27)wherePECeandPECngaretheprimaryenergyconversionfactorsforelectricityandnaturalgas,respectivley. Thetotalcarbondioxideemissionscanbebrokendownaccord-ingly CDE=CDEelectricity+CDEfuel-pre-combstion+CDEfuel-onsite-pgu +CDEfuel-onsite-boiler (28) whereCDEelectricityarethecarbondioxideemissionsfordeliveredelectricity,CDEfuel-pre-combustionarethepre-combustioncarbondiox-ideemissionsforfueldeliverytothebuilding,andCDEfuel-onsite-pguandCDEfuel-onsite-boilerarerespectively,thePGUandboileron-sitecarbondioxideemissionsresultingfromfuelcombustion.Simi-larlytodetermingprimaryenergyconsumption,carbondioxideemissionsarecomputedusingCDEconversionfactors.ThecarbondioxideemissionsfordeliveredelectricitycanbeexpressedasCDEelectricity=(Egrid−Eexport)CDEe (29) whereCDEeistheemissionfactorfordeliveredelectricity.Thepre-combustioncarbondioxideemissionsforfueldeliverytobuildingsandtheon-sitecombustioncarbondioxideemissionsinthePGUandboilercanbedetermined,respectively,asCDEfuel-pre-combstion=(Fpgu+Fboiler)CDEng-pre-combstion(30)CDEfuel-onsite-pgu=(Fpgu+Fboiler)CDEng-onsite-pgu(31)CDEfuel-onsite-boiler=(Fpgu+Fboiler)CDEng-onsite-boiler (32) whereCDEng-pre-combustion,CDEng-onsite-pgu,andCDEng-onsite-boileraretheemissionfactorsforpre-combustion(extraction,processing,anddeliveryofnaturalgas),PGUon-sitecombustion,andboileron-sitecombustion,respectively.IncomputingPECandCDE,thenetelectricityimportedfromthegridisused.Thisisbecauseexportedelectricitydisplaceselectricitythatmustotherwisebegeneratedbythepowerplanttoserveothercustomers,therebyreducingtheamountofrawfuelconsumed.ThePECandCDEemissionsfactorsforelectricityandnaturalgasinthecityofChicagoarepresentedinTable2. 5.3.Overallcostandpaybackperiod Whencomparedtothereferencecase,thetotalsavingsfromtheCCHPsystemare SavingsCCHP=Costref−Costtotal (33) WhileinstallingaCCHPsystemcanprovidesavingsintermsofreducedoperationalcosts,therearenormallyhighercapitalcostsassociatedwiththeimplementationofsuchasystem.Whendecid-ingwhetherornottoinvestinaCCHPsystemthistradeoffmustbeweighed,and,onesuchmethodistoevaluatethesimplepaybackperiod.Thesimplepaybackperiodestimatesthenumberofyearsofoperationneededbeforetheinitialinvestmentcanberecouped.Formanybusinesses,themaximumpaybackperiodforanyinvest-mentisset.Inthissituation,themaximumallowableincreaseincapitalcostoverthereferencecasecanbedeterminedfromthesetpaybackperiod.Thiscanbeexpressedas cost=CapitalCostCCHP−CapitalCostref=Payback×SavingsCCHP (34) Therefore,toguaranteethispaybackperiod,theaboveequationcanbeusedtoestimatethetotalinvestmenttoupgradetoaCCHPsystemortheextrainvestmentoverthereferencecase’scapitalcoststhatcanbemadetoinstallaCCHPsysteminanewbuilding.6.Results ThissectionpresentstheresultswhichwereobtainedusingtheCCHPoperationalstrategiesdescribedinSection4.Forthesestrate-gies,thevaluesofthevariablesusedtomodeltheCCHPsystemandthePGUcharacteristicsarepresentedinTable3. Table4presentstheannualtotaloperationalcost(withoutincludingcarboncredits),PEC,andCDEforthedifferentopera-tionstrategiesevaluatedinthispaperandFig.4presentsthesesresultsasthepercentdeviationfromthereferencecase.Whenthepercentdeviationisnegativethissignifiesareductionfromtheref-erencecase.Fig.4illustratesthatalltheoperationstrategiesreduce 1634 Table3 CCHPparameters.ParameterBoilerefficiencyaCoeficient,ACoeficient,BCoeficient,C HeatrecoverysystemefficiencyHeatingcoilefficiencyChillerCOP MaxPGUload,L,(kW) MaxPGUefficiency=L/FpguPGUefficiencybCoefficient,aCoefficient,bCoefficient,cCoefficient,dCoefficient,eCoefficient,aCoefficient,bCoefficient,cCoefficient,aCoefficient,bCoefficient,c ab P.J.Mago,A.K.Hueffed/EnergyandBuildings42(2010)1628–1636 Value−448×10−493×10−40.85550.80.80.78000.33 −813.33×10−10427.99×10−07−839.67×10−05783.00×10−03−433.72×10−13−119.99×10−6971.93×10−413.2915 −326.50×10−7477.36×10−416.1135 Fig.5.Comparisonoftheprimaryenergyconsumption(PEC)forthethreeevaluatedoperationalstrategies:FEL,FTL,andFSS. ASHRAEhandbook[23].Capstone[22]. Fig.4.PercentvariationoftheCCHPbuildingfromthereferencebuildingforcost,PEC,andCDEunderthedifferentoperationstrategies. theoperationalcost,PEC,andCDE.Thereductionsinoperatingcostsrangefrom1.8%to2.7%.ThecostreductionforCCHP-FTLwithexportelectricity(2.7%)isjustslightlybetterthatthecostreductionforCCHP-FTLwithoutexport(2.5%).RegardingPEC,themaximumPECreductionwasobtainedforCCHP-FSS(15.9%)whilethemin-imumreductionwasCCHP-FTLwithoutexportelectricity(6.3%).CCHP-FTLwithexportandCCHP-FELyieldedareductionof14.1%and14.4%,respectively.TheCDEreductionsforCCHP-FEL,CCHP-FSS,CCHP-FTLwithexport,andCCHP-withoutexportwere49.2%,48.3%,37.7%,and29.5%,respectively.Thisfigureillustratesthatfortheevaluatedlargeofficebuilding,oneofthebiggestadvantagesofutilizingCCHPsystemsisthesignificantreductionofCDE.ThetwostrategiesprovidingthebestCCHPperformancefortheevaluatedlargeofficebuildinginChicagoareCCHP-FELandCCHP-FSS. Table4 Cost,PEC,andCDEresultsforthedifferentoperationalstrategies. Cost($/year) PEC(kWh/year) Asmentionedbefore,themaximumPECreductionwasobtainedforCCHP-FSS.ThiscanbeexplainedusingFig.5thatgivesthemonthlyPECforthethreedifferentevaluatedoperationalstrate-gies.ThisfigureillustrateshowtheCCHP-FSSfollowstheelectricloadforsomemonthsandfollowsthethermalloadforothers.ForthemonthsofFebruary,March,April,May,September,October,andNovember,LF>1;therefore,theCCHPsystemfollowstheelectricload.Fortheremainingmonths,LF<1andthesystemfollowsthethermalload.TheFSSstrategybasicallyfollowsthestrategythatconsumeslessprimaryenergyineachmonthwhichevidentlywillreducetheoverallPECduringthewholeyear. Fig.6displaysthedistributionofCDEbysourceforthedifferentCCHPsystem’soperationstrategies.ForCCHP-FELthemajorityoftheemissionsarefromtheon-sitecombustioninthePGU(68.9%).Ontheotherhand,fortheCCHP-FTLwithexportandtheCCHP-FTLwithoutexportmostoftheemissionscomefromthedeliveredelectricity(48.3%and.4%,respectively)followedbythePGUon-sitecombustionemissions(40.5%and35.8%,respectively).Forthelastoperationstrategy,CCHP-FSS,65.5%oftheemissionsarepro-ducedfromtheon-sitePGUcombustionand18.6%arearesultofthedeliveredelectricity.Therefore,forCCHP-FTLthedeliveredelectricitydominatestheCDEwhileforCCHP-FELandCCHP-FSS,thePGUon-sitecombustionisthedominantcontributortoemis-sions.Forallthecases,theemissionsfromtheon-sitecombustionoftheboilerarelow,between6.0%and12%.Forthereferencebuild-ing,93.2%oftheCDEareproducedfromthedeliveredelectricitywhileonly6.8%comesfromfuelconsumption.TheseproportionschangewhenCCHPsystemsareused.ForCCHP-FELandCCHP-FSS88.2%and81.4%,respectively,comesfromfuelutilization.Ontheotherhand,forCCHP-FTLwithandwithoutexport,51.7%and45.6%,respectively,comesfromfuelutilization. Fig.7illustratestheeffectofcarboncreditsbygivingthetotalcostasapercentvariationfromthereferencecaseforvaryingval-uesofcarboncredit.Thehigherthecarboncreditvalue(in$/metrictonofCO2-equivalent)thelargerthecostreductionduetotheCCHPsystemoperation.HavingthelargestCDEreductionfromtheref-erencecaseamongtheoperationstrategies,theCCHP-FELstrategystandstobenefitthemostfromcarboncredits.Forthisstrategy,theoperationalcostcanbereducedfrom3.0%belowthereference CDE(kg/year)Electricity Pre-combustion34,492227,774163,824163,824213,708 On-sitepgu– 1,938,7101,399,1141,399,1141,876,415 On-siteboiler362,482343,236241,826241,826263,349 Total5,829,4722,858,9903,557,7444,040,2382,914,876 ReferenceCCHP-FEL CCHP-FTL(withexport)CCHP-FTL(withoutexport)FSS448,530440,613436,579437,407440,90217,817,17515,252,49715,299,25216,690,11014,984,2725,432,499349,2701,752,9802,235,474561,404 P.J.Mago,A.K.Hueffed/EnergyandBuildings42(2010)1628–16361635 Fig.6.DistributionofCDEbysourcefor(a)CCHP-FEL,(b)CCHP-FTLwithexport,(c)CCHP-FTLwithoutexport,and(d)CCHP-FSS. caseto7.3%belowthereferenceforcarboncreditvaluesof2$/met-rictonofCO2-equivalentand$10/metrictonofCO2-equivalent.Inaddition,withoutcarboncreditsCCHP-FEListhemostexpen-sivestrategy,butatabout$6.00/metrictonofCO2-equivalentitbecomesoneoftheleastexpensivestrategy.TheoperationstrategythatwouldbenefittheleastfromthecarboncreditsistheCCHP-FTLwithoutexport,withcostreductionsfrom3.2%belowthereferencecaseto5.6%belowthereferenceforcarboncreditvaluesof$2/met-rictonofCO2-equivalentand$10/metrictonofCO2-equivalent.TheoperationalcostfortheCCHP-FSScanbereducedfrom3.3%belowthereferencecaseto7.4%belowthereferenceforcarboncreditvaluesof$2/metrictonofCO2-equivalentand$10/metrictonofCO2-equivalent,respectively.Whileoffsettingemissionsbypurchasingcarboncreditsisnotcurrentlyrequired,thepotentialfinancialbenefitsfromloweringemissionsthroughtheoperationofaCCHPsystemareimportanttoestimate. Fig.8showstheextracost(overthereferencebuildingcost)thatcanbeinvestedtoupgradetoaCCHPsystemfordifferentpay-backperiods.ThisfigureillustratesthattheCCHP-FSSallowsthelargestamountofextrainvestmentwhiletheCCHP-FTLwithout exportprovidestheleastamountofaddedinvestment.Foratypi-calpaybackperiodof3years,anadditional$79,311canbeinvestedtoupgradetoaCCHP-FSSsystemfromthereferencecase.Forthesamepaybackperiod,anadditional$,280canbeinvestedforasystemoperatingunderCCHP-FTLwithoutexport. Finally,Fig.9illustratestheeffectoftheexportelectricitypriceontheannualcostoftheCCHP-FTLwithexportfordifferentcarboncreditvalues.Thevaluesonthex-axisrepresenttheratiooftheexportpricetotheelectricitypriceforimport,whilethey-axisgivestheoperationalcostasapercentvariationformthereferencecase.Astheratioincreases,theresultingcostreductionsincrease.Also,thisfigureconfirmsthathighervaluesofthecarboncredityieldhigherreductionsinthecostofoperation.Fortheparticularcaseofzerocarboncreditvalue,theoperationalcostis2.8%lowerthanthereferencecaseiftheratioisequaltozero(basicallynoexport)anddecreasesto3.2%belowthereferencecaseiftheratioisequalto1.However,forcarboncreditof$6/metrictonofCO2-equivalenttheoperationalcostis5.4%lowerthanthereferencecaseiftheratioisequaltozeroanddecreasesto5.7%belowthereferencecaseif Fig.7.EffectofthecarboncreditvalueontheoverallCCHPsystemoperationalcost. Fig.8.ExtrainvestmentsontheCCHPprojectoverconventionaltechnologiesfordifferentpaybackperiodsusingacarboncreditvalueof$6/metrictonofCO2-equivalent. 1636P.J.Mago,A.K.Hueffed/EnergyandBuildings42(2010)1628–1636 Fig.9.Effectoftheexportelectricitypriceonthepercentvariationfromtherefer-encecaseoftheoverallCCHPoperationalcost. theratioisequalto1.ThiscanbemoresignificantforothercasesandlocationsifthereisproportionatelymoreelectricitytoexportduringtheCCHPsystemoperation.7.Conclusion ThispaperpresentedtheperformanceofaturbinedrivenCCHPsystemforalargeofficebuilding.Thecost,energy,andemissionresultsthatwereobtainedfromoperatingthesystemundertheoperationstrategiesoffollowingtheelectricdemandofthefacil-ity,followingthethermaldemandofthefacility,orfollowingaseasonalstrategywerecomparedtoareferencebuildingoperat-ingunderconventionaltechnologiestodeterminetheadvantagesordisadvantagesoftheCCHPsystem’soperation.ThispaperalsodeterminedthedistributionofcarbondioxideemissionsbysourceandhowreducingcarbondioxideemissionsthroughtheuseofaCCHPsystemcouldtranslateintoeconomicbenefitsusingcarboncredits.ResultsindicatethatfortheevaluatelargeofficebuildinglocatedinChicago,IL,theCCHPoperationunderallthestrategiesreducestheoperationalcost,primaryenergyconsumption,andcarbondioxideemissionsbyanaverageof2.6%,12.1%,and40.6%,respectively,fromthereferencecaseforazerocarboncreditvalue.TheproposedFSSstrategyyieldsthelargestPECreductionfromthereferencecase(15.9%).ThetwostrategiesprovidingthebestCCHPperformanceareCCHP-FELandCCHP-FSS. WiththeuseofaCCHPsystemthepercentofcarbondioxideemissionsfromdeliveredelectricityisreduced.ThemajorityofCDEfortheFELandFSSstrategiesisaresultofthePGUoperation.Ontheotherhand,themajorityoftheemissionsfortheFTLstrategiesisduetodeliveredelectricity. Carboncreditscansuccessfullyyieldfinancialrewardforreduc-ingcarbonemissions.Thehigherthecarboncreditvalue(in$/metrictonofCO2-equivalent)thelargerthecostreductionoftheCCHPsystemoperation.HavingthelargestCDEreductionfromthereferencecaseamongtheoperationstrategies,CCHP-FELstandstobenefitthemostfromcarboncredits.Forthisstrategy,theoperationalcostcanbereducedfrom3.0%belowthereferencebuildingto7.3%belowthereferencebuildingforcarboncreditvaluesof$2/metrictonofCO2-equivalentand$10/metrictonofCO2-equivalent. Finally,fortypicalpaybackperiodof3yearsandacarboncreditvalueof$6/metrictonofCO2-equivalent,anadditional$79,311canbeinvestedtoupgradetotheCCHP-FSSsystem.Forthesamepaybackperiodandcarboncredit,anadditional$,280canbeinvestedforasystemoperatingunderCCHP-FTLwithoutexport.References [1]E.Cardona,A.Piacentino,Avalidationmethodologyforacombinedheating coolingandpower(CHCP)pilotplant,JournalofEnergyResourcesTechnology126(2004)285–292. [2]E.Cardona,A.Piacentino,Matchingeconomical,energetic,andenvironmental benefits:ananalysisforhybridCCHP-heatpumpsystems,Energy31(March(4))(2006)490–515. [3]A.Jalalzadeh-Azar,AcomparisonofelectricalandthermalloadfollowingCHP systems,ASHRAETransactions110(2004)85–94. [4]P.J.Mago,N.Fumo,L.M.Chamra,PerformanceanalysisofCCHPandCHPsys-temsoperatingfollowingthethermalandelectricload,InternationalJournalofEnergyResearch33(2009)852–8. [5]P.J.Mago,L.M.Chamra,AnalysisandoptimizationofCCHPsystemsbasedon energy,economical,andenvironmentalconsiderations,EnergyandBuildings41(2009)1099–1106. [6]T.Savola,I.Keppo,Off-designsimulationandmathematicalmodelingof small-scaleCHPplantsatpartloads,AppliedThermalEngineering25(2005)1219–1232. [7]X.Q.Kong,R.Z.Wang,X.H.Huang,EnergyoptimizationmodelforaCCHPsys-temwithavailablegasturbines,AppliedThermalEngineering25(2–3)(2005)377–391. [8]J.R.Khan,W.E.Lear,S.A.Sherif,E.B.Howell,J.F.Crittenden,P.L.Meitner,A novelpressurizedCHPsystemwithwaterextractionandrefrigeration,AppliedThermalEngineering30(2010)1081–1090. [9]L.Colombo,F.Armanasco,O.Perego,Experimentationonacogenerativesystem basedonamicroturbine,AppliedThermalEngineering27(March(4))(2007)705–711. [10]M.A.Ehyaei,A.Mozafari,Energy,economicandenvironmental(3E)analysisof amicrogasturbineemployedforon-sitecombinedheatandpowerproduction,EnergyandBuildings42(2010)259–2. [11]N.Fumo,P.J.Mago,L.M.Chamra,Cooling,heating,andpowerenergyperfor-manceforsystemfeasibility,IMechEJournalofPowerandEnergy222(5)(2008)347–3. [12]H.Cho,R.Luck,S.Eksioglu,L.M.Chamra,Cost-optimizedreal-timeoperation ofCHPsystems,EnergyandBuildings41(2009)445–451. [13]N.Fumo,P.J.Mago,L.M.Chamra,Hybrid-coolingcombinedcooling,heating,and powersystem,IMechEJournalofPowerandEnergy223(5)(2009)761–770.[14]A.Moran,P.J.Mago,L.M.Chamra,Thermoeconomicmodelingofmicro-CHP (micro-cooling,heating,andpower)forsmallcommercialapplications,Inter-nationalJournalofEnergyResearch32(July(9))(2008)808–823. [15]H.Ren,W.Gao,Y.Ruan,OptimalsizingforresidentialCHPsystem,Applied ThermalEngineering28(2008)514–523. [16]X.Q.Kong,R.Z.Wang,Y.Li,X.H.Huang,Optimaloperationofamicro-combined cooling,heatingandpowersystemdrivenbyagasengine,EnergyConversionandManagement50(2009)530–538.[17]ChicagoClimateExchangeWebsite,Availableat:http://www. chicagoclimatex.com/. [18]P.Torcellini,etal.,DOEcommercialbuildingbenchmarkmodels,in:ACEEE 2008SummerStudyonEnergyEfficiencyinBuildings,NRELConfer-encePaperNREL/CP-550-43291,2008,Availableat:http://www.nrel.gov/docs/fy08osti/43291.pdf. [19]DepartmentofEnergy(DOE),CommercialBuildingBenchmarkMod-els,2008,Washington,DC,Availableat:http://www.eere.energy.gov/buildings/highperformance/benchmark.html. [20]EnergyPlus,EnergySimulationSoftware,Availableat:http://www.eere. energy.gov/buildings/energyplus/. [21]AmericanSocietyofHeating,RefrigeratingandAir-ConditioningEngineers (ASHRAE),EnergyStandardforBuildingsExceptLow-RiseResidentialBuild-ings,2007,ANSI/ASHRAE/IESNAStandard90.1-2007,Atlanta,GA. [22]CapstoneTurbineCorporation,[Online]December2009,Availableat: www.capstoneturbine.com. [23]AmericanSocietyofHeating,RefrigeratingandAir-ConditioningEngineers (ASHRAE),SystemsandEquipmentHandbook,2008,Atlanta,GA. [24]U.S.DepartmentofEnergy,NewConstructionBenchmarkDataFiles, 2009,Availableat:http://www1.eere.energy.gov/buildings/commercialinitiative/newconstruction.html(May). 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- jqkq.cn 版权所有 赣ICP备2024042794号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务