您好,欢迎来到吉趣旅游网。
搜索
您的当前位置:首页2016年高考物理一轮复习考点练习(江苏专版)《曲线运动万有引力与航天》第4课时

2016年高考物理一轮复习考点练习(江苏专版)《曲线运动万有引力与航天》第4课时

来源:吉趣旅游网
第4课时 万有引力与航天

考纲解读 1.掌握万有引力定律的内容、公式及应用.2.理解环绕速度的含义并会求解.3.了解第二和第三宇宙速度.

考点一 天体质量和密度的计算

1.解决天体(卫星)运动问题的基本思路

(1)天体运动的向心力来源于天体之间的万有引力,即

v2Mm4π2r2

G2=man=m=mωr=m2 rrT

Mm

(2)在中心天体表面或附近运动时,万有引力近似等于重力,即G2=mg(g表示天体表面的

R重力加速度).

2.天体质量和密度的计算

(1)利用天体表面的重力加速度g和天体半径R.

MmgR2

由于G2=mg,故天体质量M=,

RG

MM3g

天体密度ρ===.

V434πGR

πR3

(2)通过观察卫星绕天体做匀速圆周运动的周期T和轨道半径r.

Mm4π24π2r3

①由万有引力等于向心力,即G2=m2r,得出中心天体质量M=2;

rTGT②若已知天体半径R,则天体的平均密度

MM3πr3ρ===;

V43GT2R3πR3

③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r等于天体半径R,则天体

密度ρ=2.可见,只要测出卫星环绕天体表面运动的周期T,就可估算出中心天体的密度.

GT例1 1798年,英国物理学家卡文迪许测出万有引力常量G,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G,地球表面处的重力加速度g,地球半径R,地球上一个昼夜的时间T1(地球自转周期),一年的时间T2(地球公转周期),地球中心到月球中心的距离L1,地球中心到太阳中心的距离L2.你能计算出( )

gR2

A.地球的质量m地= G34π2L2B.太阳的质量m太=2 GT2

34π2L1C.月球的质量m月=2 GT1

D.可求月球、地球及太阳的密度

Gm地m0gR2

解析 对地球表面的一个物体m0来说,应有m0g=,所以地球质量m地=,选项A

R2GGm太m地4π24π2L32正确.对地球绕太阳运动来说,有=m地2L2,则m太=22,B项正确.对月球绕L2T2GT2地球运动来说,能求地球的质量,不知道月球的相关参量及月球的卫星的运动参量,无法求出它的质量和密度,C、D项错误. 答案 AB 变式题组

1.[天体质量的估算](2013·大纲全国·18)“嫦娥一号”是我国首次发射的探月卫星,它在距月球表面高度为200 km的圆形轨道上运行,运行周期为127分钟.已知引力常量G=6.67×10

-11

N·m2/kg2,月球的半径为1.74×103 km.利用以上数据估算月球的质量约为( )

A.8.1×1010 kg B.7.4×1013 kg C.5.4×1019 kg D.7.4×1022 kg 答案 D

Mm2π2232解析 由G=m(R+h)(),解得月球的质量M=4π(R+h)/GT,代入数据得:M=7.4

TR+h2×1022 kg,选项D正确.

2.[天体密度的计算]“嫦娥三号”探测器已于2013年12月2日1时30分,在西昌卫星发射中心成功发射.“嫦娥三号”携带“玉免号”月球车首次实现月球软着陆和月面巡视勘察,并开展月表形貌与地质构造调查等科学探测.已知月球半径为R0,月球表面处重力加速度为g0,Rgρ

地球和月球的半径之比为=4,表面重力加速度之比为=6,则地球和月球的密度之比为

R0g0ρ0( )

23A. B. 32C.4 D.6 答案 B

Mm′MM3g解析 设星球的密度为ρ,由G2=m′g得GM=gR2,ρ==,联立解得:ρ=,

RV434GπR

πR3

ρg·R0Rgρ3则:=,将=4,=6代入上式,解得:=,选项B正确.

ρ0g0·RR0g0ρ02

估算天体质量和密度时应注意的问题

(1)利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天体的质量,并非环绕天体的质量.

(2)区别天体半径R和卫星轨道半径r,只有在天体表面附近的卫星才有r≈R;计算天体密度时,

4

V=πR3中的R只能是中心天体的半径.

3

考点二 卫星运行参量的比较与计算

1.卫星的各物理量随轨道半径变化的规律

2.极地卫星和近地卫星

(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)两种卫星的轨道平面一定通过地球的球心.

例2 (2013·广东·14)如图1,甲、乙两颗卫星以相同的轨道半径分别绕质量为M和2M的行星做匀速圆周运动,下列说法正确的是( )

图1

A.甲的向心加速度比乙的小 B.甲的运行周期比乙的小 C.甲的角速度比乙的大 D.甲的线速度比乙的大 答案 A

v2Mm4π2GM2

解析 由万有引力提供向心力得G2=m=mωr=ma=m2r,变形得:a=2,v=

rrTr3GMGMr,ω= ,只有周期T和M成减函数关系,而a、v、ω和M成3,T=2π rrGM增函数关系,故选A. 变式题组

3.[卫星运行参量的比较](2013·海南·5)“北斗”卫星导航定位系统由地球静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.地球静止轨道卫星和中轨道卫星都在圆轨道上运行,它们距地面的高度分别约为地球半径的6倍和3.4倍.下列说法正确的是( ) A.静止轨道卫星的周期约为中轨道卫星的2倍 B.静止轨道卫星的线速度大小约为中轨道卫星的2倍 C.静止轨道卫星的角速度大小约为中轨道卫星的

1 7D.静止轨道卫星的向心加速度大小约为中轨道卫星的答案 A

1 74.[同步卫星问题的有关分析]已知地球质量为M,半径为R,自转周期为T,地球同步卫星质量为m,引力常量为G.有关同步卫星,下列表述正确的是( ) 3GMT2A.卫星距地面的高度为

4π2B.卫星的运行速度小于第一宇宙速度

Mm

C.卫星运行时受到的向心力大小为G2

R

D.卫星运行的向心加速度小于地球表面的重力加速度 答案 BD

解析 天体运动的基本原理为万有引力提供向心力,地球的引力使卫星绕地球做匀速圆周运

v24π2mrGMm

动,即F万=F向=m=2.当卫星在地表运行时,F万=2=mg(R为地球半径),设同

rTR

GMmGMm

步卫星离地面高度为h,则F万==F=maR+h2R+h2得,v=

R+hmv2

< R+hGM

2

3GMT2GMGMm4πmR+h

,B正确.由=,得R+h= 22,即2RT4πR+h

3GMT2h= -R,A错误.

4π2

同步卫星的六个“一定”

考点三 卫星变轨问题分析

2

Mmv

1.当卫星的速度突然增大时,G2rr

GM

脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v= 可知其运r行速度比原轨道时减小.

2

Mmv

2.当卫星的速度突然减小时,G2>m,即万有引力大于所需要的向心力,卫星将做近心运rr

GM动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v= 可知

r

其运行速度比原轨道时增大. 卫星的发射和回收就是利用这一原理.

例3 在完成各项任务后,“神舟十号”飞船于2013年6月26日回归地球.如图2所示,飞船在返回地面时,要在P点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q为轨道Ⅱ上的一点,M为轨道Ⅰ上的另一点,关于“神舟十号”的运动,下列说法中正确的有( )

图2

A.飞船在轨道Ⅱ上经过P的速度小于经过Q的速度

B.飞船在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经过M的速度 C.飞船在轨道Ⅱ上运动的周期大于在轨道Ⅰ上运动的周期

D.飞船在轨道Ⅱ上经过P的加速度小于在轨道Ⅰ上经过M的加速度

解析 由开普勒行星运动定律可知选项A正确;飞船在轨道Ⅰ上做匀速圆周运动,故飞船经过P、M两点时的速率相等,由于飞船在P点进入轨道Ⅱ时相对于轨道Ⅰ做向心运动,可知飞船在轨道Ⅱ上P点速度小于轨道Ⅰ上P点速度,故选项B正确;根据开普勒第三定律可知,飞船在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期,选项C错误;根据牛顿第二定律可知,飞船在轨道Ⅱ上经过P的加速度与在轨道Ⅰ上经过M的加速度大小相等,选项D错误. 答案 AB 递进题组

5.[变轨中运行参量的比较]2013年12月2日,我国探月探测器“嫦娥三号”在西昌卫星发射中心成功发射升空,此飞行轨道示意图如图3所示,地面发射后奔向月球,在P点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q为轨道Ⅱ上的近月点.下列关于“嫦娥三号”的运动,正确的说法是( )

图3

A.发射速度一定大于7.9 km/s

B.在轨道Ⅱ上从P到Q的过程中速率不断增大

C.在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经过P的速度 D.在轨道Ⅱ上经过P的加速度小于在轨道Ⅰ上经过P的加速度 答案 ABC

解析 “嫦娥三号”探测器的发射速度一定大于7.9 km/s,A正确.在轨道Ⅱ上从P到Q的过程中速率不断增大,选项B正确.“嫦娥三号”从轨道Ⅰ上运动到轨道Ⅱ上要减速,故在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经过P的速度,选项C正确.在轨道Ⅱ上经过P的加速度等于在轨道Ⅰ上经过P的加速度,D错.

6.[变轨中运行参量的比较]如图4所示,搭载着“嫦娥二号”卫星的长征三号丙运载火箭在西昌卫星发射中心点火发射,卫星由地面发射后,进入地月转移轨道,经多次变轨最终进入距离月球表面100 km、周期为118 min的工作轨道,开始对月球进行探测,则( )

图4

A.卫星在轨道Ⅲ上的运动速度比月球的第一宇宙速度小

B.卫星在轨道Ⅲ上经过P点的速度比在轨道Ⅰ上经过P点时的大 C.卫星在轨道Ⅲ上运行周期比在轨道Ⅰ上短 D.卫星在轨道Ⅲ上的运行周期比在轨道Ⅰ上长 答案 AC

考点四 宇宙速度的理解与计算

1.第一宇宙速度又叫环绕速度.

mv21GMm

推导过程为:由mg==2得:

RR

GMv1= =gR=7.9 km/s. R

2.第一宇宙速度是人造地球卫星在地面附近环绕地球做匀速圆周运动时具有的速度. 3.第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度. 注意 (1)两种周期——自转周期和公转周期的不同.

(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度. (3)两个半径——天体半径R和卫星轨道半径r的不同.

(4)第二宇宙速度(脱离速度):v2=11.2 km/s,使物体挣脱地球引力束缚的最小发射速度. (5)第三宇宙速度(逃逸速度):v3=16.7 km/s,使物体挣脱太阳引力束缚的最小发射速度. 例4 “伽利略”木星探测器,从19年10月进入太空起,历经6年,行程37亿千米,终于到达木星周围.此后在t秒内绕木星运行N圈后,对木星及其卫星进行考察,最后坠入木星大气层烧毁.设这N圈都是绕木星在同一个圆周上运行,其运行速率为v,探测器上的照相机正对木星拍摄整个木星时的视角为θ(如图5所示),设木星为一球体.求:

图5

(1)木星探测器在上述圆形轨道上运行时的轨道半径; (2)木星的第一宇宙速度.

vtv

答案 (1) (2) 2πNθsin

2

2πr

解析 (1)设木星探测器在题述圆形轨道运行时,轨道半径为r,由v=

T

vT

可得:r=

t

由题意可知,T=

Nvt

联立解得r= 2πN(2)探测器在圆形轨道上运行时,万有引力提供向心力,

v2mM

G2=m. rr

2m′Mv0设木星的第一宇宙速度为v0,有,G2=m′

RR

r联立解得:v0= v

R

由题意可知R=rsin ,解得:v0=. 2θsin

2

变式题组

7.[第一宇宙速度的理解与计算]某人在一星球表面上以速度v0竖直上抛一物体,经过时间t后物体落回手中.已知星球半径为R,那么沿星球表面将物体抛出,要使物体不再落回星球表面,抛射速度至少为( ) v0t2v0RA. B. Rt

v0Rv0

C. D. tRt答案 B

解析 要使物体不再落回星球表面,抛射速度必须达到星球的第一宇宙速度,满足v= 1

=gR,而由竖直上抛规律知v0=gt,所以v=

2

2v0R

,B对. t

GMR

8.[宇宙速度的理解与计算]2011年中俄联合实施探测火星计划,由中国负责研制的“萤火一号”火星探测器与俄罗斯研制的“福布斯—土壤”火星探测器一起由俄罗斯“天顶”运载火

11

箭发射前往火星.已知火星的质量约为地球质量的,火星的半径约为地球半径的.下列关于

92火星探测器的说法中正确的是( ) A.发射速度只要大于第一宇宙速度即可

B.发射速度只有达到第三宇宙速度才可以

C.发射速度应大于第二宇宙速度而小于第三宇宙速度 D.火星探测器环绕火星运行的最大速度为地球第一宇宙速度的答案 CD

M地

解析 根据三个宇宙速度的意义,可知选项A、B错误,选项C正确;已知M火=,R

9R地vm=,则=2v1

GM火

∶R火

GM地2

=. 3R地

考点五 双星或多星模型

绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图6所示,双星系统模型有以下特点:

2

3

图6

(1)各自所需的向心力由彼此间的万有引力相互提供,即 Gm1m2Gm1m222

2=m1ω1r1,2=m2ω2r2 LL(2)两颗星的周期及角速度都相同,即 T1=T2,ω1=ω2

(3)两颗星的半径与它们之间的距离关系为:r1+r2=L

m1r2(4)两颗星到圆心的距离r1、r2与星体质量成反比,即=

m2r1

3L

(5)双星的运动周期T=2π Gm1+m24π2L3

(6)双星的总质量公式m1+m2=2 TG

例5 宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用相互绕转,称之为双星系统.在浩瀚的银河系中,多数恒星都是双星系统.设某双星系统A、B绕其连线上的O点做匀速圆周运动,如图7所示.若AO>OB,则( )

图7

A.星球A的质量一定大于星球B的质量

B.星球A的线速度一定大于星球B的线速度

C.双星间距离一定,双星的质量越大,其转动周期越大 D.双星的质量一定,双星之间的距离越大,其转动周期越大

解析 设双星质量分别为mA、mB,轨道半径分别为RA、RB,两者间距为L,周期为T,角速度为ω,由万有引力定律可知: GmAmB=mAω2RA① 2LGmAmB=mBω2RB② 2LRA+RB=L③

mARB由①②式可得=,

mBRA而AO>OB,故A错误. vA=ωRA,vB=ωRB,B正确.

联立①②③得G(mA+mB)=ω2L3,

又因为T=,

ω

L3故T=2π ,可知C错误,D正确.

GmA+mB答案 BD 变式题组

9.[双星模型](2013·山东·20)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为( )

n3n3A.T B.T

k2kn2nC.T D.T

kk答案 B

解析 双星靠彼此的引力提供向心力,则有 m1m24π2G2=m1r12 LTm1m24π2G2=m2r22 LT并且r1+r2=L

解得T=2π

Gm1+m2n3L3L3当两星总质量变为原来的k倍,两星之间距离变为原来的n倍时 T′=2π=

n3·T k

Gkm1+m2

故选项B正确.

10.[多星模型]宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m,半径均为R,四颗星稳定分布在边长为a的正方形的四个顶点上.已知引力常量为G.关于四星系统,下列说法正确的是( )

A.四颗星围绕正方形对角线的交点做匀速圆周运动

a

B.四颗星的轨道半径均为

2

Gm

C.四颗星表面的重力加速度均为2

R2a

D.四颗星的周期均为2πa

4+2Gm答案 ACD

解析 其中一颗星体在其他三颗星体的万有引力作用下,合力方向指向对角线的交点,围绕正方形对角线的交点做匀速圆周运动,由几何知识可得轨道半径均为

2

a,故A正确,B错误;2

mm′Gm

在星体表面,根据万有引力等于重力,可得G2=m′g,解得g=2,故C正确;由万有引

RR

Gm22Gm24π22a2a

力定律和向心力公式得=m2·,T=2πa,故D正确. 22+aT22a4+2Gm

高考模拟 明确考向

1.(2014·江苏单科·2)已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为( ) A.3.5 km/s B.5.0 km/s C.17.7 km/s D.35.2 km/s 答案 A

v2GMm

解析 由万有引力定律2=m,解得v=

RRv火

=地=2R火,所以v地

M火R地M地R火

GM

,根据题设条件可知,MR

地=10M火,R

,又因为地球的第一宇宙速度为v地=7.9 km/s,可解得航天器

在火星表面附近绕火星做匀速圆周运动的速率v火≈3.5 km/s,选项A正确.

2.(2014·新课标Ⅱ·18)假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g0,在赤道的大小为g,地球自转的周期为T,引力常量为G.地球的密度为( ) 3πg0-g3πg0A. B.2 2GTg0GTg0-g3π3πg0C.2 D.2 GTGTg答案 B

Mm2πMm4解析 物体在地球的两极时,mg0=G2,物体在赤道上时,mg+m()2R=G2,又M=

RTR3

3πg0

πR3ρ,联立以上三式解得地球的密度ρ=2.故选项B正确,选项A、C、D错误.

GTg0-g3.(2014·福建·14)若有一颗“宜居”行星,其质量为地球的p倍,半径为地球的q倍,则该行星卫星的环绕速度是地球卫星环绕速度的( )

qA.pq倍 B.倍

p

pC.倍 D.pq3倍

q答案 C

解析 卫星绕行星做匀速圆周运动的向心力由行星对卫星的万有引力提供.设地球质量为M,

2

GMmmvGM半径为R,根据2=得地球卫星的环绕速度为v= ,同理该“宜居”行星卫星的

RRRGpMp环绕速度v′= ,故v′为地球卫星环绕速度的倍.选项C正确.

qRq4.(2014·天津·3)研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )

A.距地面的高度变大 B.向心加速度变大 C.线速度变大 D.角速度变大 答案 A

4π2

解析 地球的自转周期变大,则地球同步卫星的公转周期变大.由=m2(R+h),得h

TR+h2

GMm

3GMT2= -R,T变大,h变大,A正确.

4π2GMmGM

由2=ma,得a=2,r增大,a减小,B错误.

rr

2

GMmmvGM由2=,得v= ,r增大,v减小,C错误.

rrr

由ω=可知,角速度减小,D错误.

T

5.如图8所示,一飞行器围绕地球沿半径为r的圆轨道1运动.该飞行器经过P点时,启动推进器短时间向前喷气可使其变轨,2、3是与轨道1相切于P点的可能轨道,则飞行器( )

图8

A.变轨后将沿轨道2运动 B.相对于变轨前运行周期变长

C.变轨前、后在两轨道上经P点的速度大小相等 D.变轨前、后在两轨道上经P点的加速度大小相等 答案 D

练出高分

一、单项选择题

1.(2013·江苏单科·1)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )

A.太阳位于木星运行轨道的中心

B.火星和木星绕太阳运行速度的大小始终相等

C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方

D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 答案 C

解析 火星和木星在各自的椭圆轨道上绕太阳运动,速度的大小不可能始终相等,因此B错;太阳在这些椭圆的一个焦点上,因此A错; 在相同时间内,火星与太阳连线在相同时间内扫过的面积相等,木星与太阳连线在相同时间内扫过的面积相等,但这两个面积不相等,因此D错.本题答案为C.

2.2013年6月13日,神舟十号与天宫一号成功实现自动交会对接.假设神舟十号与天宫一号都在各自的轨道做匀速圆周运动.已知引力常量为G,下列说法正确的是( ) A.由神舟十号运行的周期和轨道半径可以求出地球的质量 B.由神舟十号运行的周期可以求出它离地面的高度

C.若神舟十号的轨道半径比天宫一号大,则神舟十号的周期比天宫一号小

D.漂浮在天宫一号内的宇航员处于平衡状态 答案 A

解析 神舟十号和天宫一号都绕地球做匀速圆周运动,万有引力提供向心力,则有4π2

m(R+h)2,得T=

T

GMmR+h2

=4π2R+h3

,已知周期和轨道半径,又知道引力常量G,可以求出地GM

球质量M,A对.只知道周期而不知道地球质量和轨道半径无法求出高度,B错.由T=

4π2R+h3

可知轨道半径越大,则周期越大,若神舟十号的轨道半径比天宫一号大,则神GM舟十号的周期比天宫一号大,C错.漂浮在天宫一号内的宇航员和天宫一号一起做匀速圆周运动,不是处于平衡状态,D错.

3.一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能减小

1

为原来的,不考虑卫星质量的变化,则变轨前、后卫星的( )

4A.向心加速度大小之比为4∶1 B.角速度大小之比为2∶1 C.周期之比为1∶8 D.轨道半径之比为1∶2 答案 C

v12v22EkMm

,所以卫星变轨前、后的速度之比为=.根据G2=m,mv21rr

2

r1v21Mm

得卫星变轨前、后的轨道半径之比为=2=,选项D错误;根据G2=ma,得卫星变轨

r2v14r2

a1r216Mm

前、后的向心加速度大小之比为=2=,选项A错误;根据G2=mω2r,得卫星变轨前、

a2r11r

ω1r382π2

后的角速度大小之比为= ,得卫星变轨前、后的周期3=,选项B错误;根据T=ω2r11ω

T1ω21

之比为==,选项C正确.

T2ω181

解析 根据Ek=mv2得v=

2

4.随着我国登月计划的实施,我国宇航员登上月球已不是梦想.假如我国宇航员登上月球并在月球表面附近以初速度v0竖直向上抛出一个小球,经时间t后小球回到出发点.已知月球的半径为R,引力常量为G,则下列说法正确的是( )

v0

A.月球表面的重力加速度为

t

22v0R

B.月球的质量为

Gt

v0R

C.宇航员在月球表面获得 的速度就可能离开月球表面围绕月球做圆周运动

t

Rt

D.宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为

v0

答案 B

2v02v0v2GMm2π

解析 根据竖直上抛运动规律可得t=,g=,A项错误;由2=mg=m=m()2R

gtRRT

22v0R2v0RRt

可得:M=,v= ,T=2π ,故B项正确,C、D项错误.

Gtt2v05.小型登月器连接在航天站上,一起绕月球做圆周运动,其轨道半径为月球半径的3倍.某时刻,航天站使登月器减速分离,登月器沿如图1所示的椭圆轨道登月,在月球表面逗留一段时间完成科考工作后,经快速启动仍沿原椭圆轨道返回.当第一次回到分离点时恰与航天站对接.登月器快速启动时间可以忽略不计,整个过程中航天站保持原轨道绕月运行.已知月球表面的重力加速度为g0,月球半径为R,不考虑月球自转的影响,则登月器可以在月球上停留的最短时间约为( )

图1

A.4.7πC.1.7π答案 A

解析 由题可知,月球半径为R,则航天站的轨道半径为3R,设航天站转一周的时间为T,GM月mm4π2GM月·m0

则有=(3R),对月球表面的物体有mg=,联立两式得T=63π2200

TR3R2R.登g0

R B.3.6πg0R

D.1.4πg0

R g0R g0

月器的登月轨道是椭圆,从与航天站分离到第一次回到分离点所用时间为沿椭圆运行一周的时间T′和在月球停留时间t之和,若恰好与航天站运行一周所用时间相同时t最小,则有:tmin

4R33R32RR

+T′=T,由开普勒第三定律有:2=2,得T′=42π,则tmin=T-T′≈4.7π,Tg0g0

T′所以只有A对.

6.2012年,天文学家首次在太阳系外找到一个和地球尺寸大体相同的系外行星P,这个行星围绕某恒星Q做匀速圆周运动.测得P的公转周期为T,公转轨道半径为r.已知引力常量为G,则( )

4π2r3A.恒星Q的质量约为2 GT4π2r3

B.行星P的质量约为2

GT

C.以7.9 km/s的速度从地球发射的探测器可以到达该行星表面 D.以11.2 km/s的速度从地球发射的探测器可以到达该行星表面 答案 A

Mm4π24π2r3

解析 根据万有引力提供向心力,以行星P为研究对象有G2=m2r,得M=2,选项

rTGTA正确;根据万有引力提供向心力只能求得中心天体的质量,因此根据题目所给信息不能求出行星P的质量,选项B错误;如果发射探测器到达该系外行星,需要克服太阳对探测器的万有引力,脱离太阳系的束缚,所以需要发射速度大于第三宇宙速度,选项C、D错误. 7.2012年7月,一个国际研究小组借助于智利的甚大望远镜,观测到了一组双星系统,它们绕两者连线上的某点O做匀速圆周运动,如图2所示.此双星系统中体积较小成员能“吸食”另一颗体积较大星体表面物质,达到质量转移的目的.假设在演变的过程中两者球心之间的距离保持不变,则在最初演变的过程中( )

图2

A.它们做圆周运动的万有引力保持不变 B.它们做圆周运动的角速度不断变大

C.体积较大星体圆周运动轨迹半径变大,线速度也变大 D.体积较大星体圆周运动轨迹半径变大,线速度变小 答案 C

解析 对双星M1、M2,设距离为L,圆周运动半径分别为r1、r2,它们做圆周运动的万有引

M1M2力为F=G2,距离L不变,M1与M2的和不变,其乘积大小变化,则它们的万有引力发生

L变化,A错;依题意双星系统绕两者连线上某点O做匀速圆周运动,周期和角速度相同,由

M1M2M1M2万有引力定律及牛顿第二定律有:G2=M1ω2r1,G2=M2ω2r2,r1+r2=L,可解得:

LL

23ωL

M1+M2=,M1r1=M2r2,由此可知ω不变,质量比等于圆周运动半径的反比,故体积较

G大的星体因质量减小,其轨道半径将增大,线速度将增大,B、D错,C对. 二、多项选择题

8.为了对火星及其周围的空间环境进行探测,我国发射了一颗火星探测器.假设探测器在离火星表面高度分别为h1和h2的圆轨道上运动时,周期分别为T1和T2.火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G.仅利用以上数据,可以计算出( )

A.火星的质量 B.探测器的质量 C.火星对探测器的引力 D.火星表面的重力加速度 答案 AD

9.一行星绕恒星做匀速圆周运动.由天文观测可得,其运行周期为T,速度为v,引力常量为G,则( ) v3T

A.恒星的质量为 2πG4π2v3

B.行星的质量为 GT2vT

C.行星运动的轨道半径为

2π2πv

D.行星运动的加速度为

T

答案 ACD

2

v2rv3TvvGMmmv4π2

解析 由2==m2r得M==,A对;无法计算行星的质量,B错;r==

rrTG2πGω2π

T

vT2π

=,C正确;a=ω2r=ωv=v,D正确. 2πT10.我国于2013年6月11日17时38分发射“神舟十号”载人飞船,并与“天宫一号”目标飞行器对接.如图3所示,开始对接前,“天宫一号”在高轨道,“神舟十号”飞船在低轨道,各自绕地球做匀速圆周运动,距离地面的高度分别为h1和h2(设地球半径为R),“天宫一号”的运行周期约为90分钟.则以下说法正确的是( )

图3

h2 h1

R+h22

B.“天宫一号”跟“神舟十号”的向心加速度大小之比为 R+h12A.“天宫一号”跟“神舟十号”的线速度大小之比为C.“天宫一号”的角速度比地球同步卫星的角速度大 D.“天宫一号”的线速度大于7.9 km/s 答案 BC

解析 由G=m可得,“天宫一号”与“神舟十号”的线速度大小之比为R+h2R+h

Mm

Mm

v2

R+h2R+h1

,R+h22

A项错误;由G=ma可得“天宫一号”与“神舟十号”的向心加速度大小之比为,R+h2R+h12B项正确;地球同步卫星的运行周期为24小时,因此“天宫一号”的周期小于地球同步卫星2π

的周期,由ω=可知,周期小则角速度大,C项正确;“天宫一号”的线速度小于地球的第

T一宇宙速度,D项错误. 三、非选择题

11.2014年10月8日,月全食带来的“红月亮”亮相天空,引起人们对月球的关注.我国发射的“嫦娥三号”探月卫星在环月圆轨道绕行n圈所用时间为t,如图4所示.已知月球半径为R,月球表面处重力加速度为g月,引力常量为G.试求:

图4

(1)月球的质量M; (2)月球的第一宇宙速度v1;

(3)“嫦娥三号”卫星离月球表面的高度h. 3g月R2t2g月R2

答案 (1) (2)g月R (3) -R

G4n2π2Mm

解析 (1)月球表面处引力等于重力,G2=mg月

Rg月R2

得M= G

v2Mm1

(2)第一宇宙速度为近月卫星运行速度,由万有引力提供向心力得G2=m RR所以月球第一宇宙速度v1=

GM=R

g月R

Mm4π2

(3)卫星做圆周运动,由万有引力提供向心力得G2=m2r

rTt

卫星周期T=

n轨道半径r=R+h

3

解得h= g月R2t2

-R 4n2π2

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- jqkq.cn 版权所有 赣ICP备2024042794号-4

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务