【命题趋向】
全国高考数学科《考试大纲》为走向高考的莘莘学子指明了复习备考的方向.考纲是考试法典,是命题的依据,是备考的总纲.科学备考的首要任务,就是要认真学习、研究考纲.对照2007年的考纲和高考函数试题有这样几个特点:
1.通过选择题和填空题,全面考查函数的基本概念,性质和图象. 2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现. 3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查. 4.一些省市对函数应用题的考查是与导数的应用结合起来考查的. 5.涌现了一些函数新题型.
6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导.
函数类试题在试题中所占分值一般为22---35分. 而2007年的不等式试题则有这样几个特点:
1.在选择题中会继续考查比较大小,可能与函数、方程、三角等知识结合出题. 2.在选择题与填空题中注意不等式的解法建立不等式求参数的取值范围,以及求最大值和最小值应用题.
3.解题中注意不等式与函数、方程、数列、应用题、解几的综合、突出渗透数学思想和方法.
分值在27---32分之间,一般为2个选择题,1个填空题,1个解答题.
可以预测在2008年的高考试题中,会有一些简单求函数的反函数,与导数结合的函数单调性-函数极值-函数最值问题;选择题与填空题中会出现一些与函数、方程、三角等知识结合的不等式问题,在解答题中会出现一些不等式的解法以及建立不等式求参数的取值范围,和求最大值和最小值的应用题特别是不等式与函数、方程、数列、应用题、解几的综合题,这些题目会突出渗透数学思想和方法,值得注意。
【考点透视】
1.了解映射的概念,理解函数的概念.
2.了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图象的绘制过程.
3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.
5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 7.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力.
8.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式. 9.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题.
10.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力.
11.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题.
12.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.
【例题解析】
1.函数的定义域及其求法
函数的定义域及其求法是近几年高考考查的重点内容之一.这里主要帮生灵活掌握求定义域的各种方法,并会应用用函数的定义域解决有关问题.
例1.(2007年广东卷理)已知函数f(x)的定义域为M,g(x)=ln(1x)的定义域为N,则M∩N=
1x (A){x|x1} (B){x|x1} (C){x|1x1} (D)
1命题意图: 本题主要考查含有分式、无理式和对数的函数的定义域的求法.
解:函数f(x)N={x|1x1}. 故选C
11x的定义域M=xx1, g(x)=ln(1x)的定义域N=xx1,∴M∩
例2. ( 2006年湖南卷)函数ylog2x2的定义域是( ) (A)(3,+∞) (B)[3, +∞) (C)(4, +∞) (D)[4, +∞) 命题意图: 本题主要考查含有无理式和对数的函数的定义域的求法.
x0解:由log2x20x4.,故选D.
2.求函数的反函数
求函数的反函数,有助与培养人的逆向思维能力和深化对函数的定义域、值域,以及函数概念的理解.
2x,x0 的反函数是( ) 例3.(2006年安徽卷)函数y2x,x0x2x,x0 (A)y2,x0 (B)yx,x0x,x0x2x,x0 (C)y2,x0 (D)yx,x0x,x0命题意图: 本题主要考查有关分段函数的反函数的求法.
解:y2x,x又y.f1(x)2yx2,y0,f1(x)x,(x0);2 x,x0.x,x0y2x,x0.故选C.
例4.(2007年湖北卷理)已知函数y2xa的反函数是ybx3,则a ;b . 命题意图: 本题主要考查反函数的求法及待定系数法等知识.
解:
y2xa,x11111与b. 比较得6,aybx3ya,yxaxa.222221 故填6;23.复合函数问题
复合函数问题,是新课程、新高考的重点.此类题目往往分为两类:一是结合函数解析式的求法来求复合函数的值.二是应用已知函数定义域求复合函数的定义域.
例5.(2007年北京卷文)对于函数①f(x)x2,②f(x)(x2)2,③f(x)cos(x2),判断如下
两个命题的真假:
命题甲:f(x2)是偶函数;
命题乙:f(x)在(,)上是减函数,在(2,)上是增函数; 能使命题甲、乙均为真的所有函数的序号是( ) A.①②
B.①③
C.②
D.③
命题意图: 本题主要考查利用复合函数和函数单调性等知识解决问题的能力. 解:f(x)(x2)2,f(x2)x2是偶函数,又函数f(x)(x2)2开口向上且在(,)上是减函数,在(2,)上是增函数.故能使命题甲、乙均为真的函数仅有f(x)(x2)2.
故选C
例6.(2006年安徽卷)函数fx对于任意实数x满足条件fx21,若f15,则
fxff5__________.
命题意图: 本题主要考查代数式恒等变形和求复合函数的值的能力.
1解:由fx21,得fx4f(x),所以f(5)f(1)5,则
fx211ff5f(5)f(1).
f(12)5fx4.函数的单调性、奇偶性和周期性
函数的单调性、奇偶性和周期性是高考的重点内容之一,考查内容灵活多样. 这里主要帮助读者深刻理解奇偶性、单调性和周期性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.
例7.(2006年全国卷) 已知函数fxa1,,若fx为奇函数,则a________.
xz1命题意图: 本题主要考查函数的解析式的求解以及函数的奇偶性应用. 常规解法:由f(x)为奇函数,所以f(x)+f(-x)=0,即a111112x1应填1. ax.22212x122x1211ax0, 2121x巧妙解法:因为f(x)为奇函数,所以f(0)=0,即a11应填1. 0,a.22201点评:巧妙解法巧在利用了f(x)为奇函数,所以f(0)=0,这一重要结论.
例8.(2007年全国卷理I)f(x),g(x)是定义在R上的函数,h(x)f(x)g(x),则“f(x),g(x)均
为偶函数”是“h(x)为偶函数”的( ) A.充要条件
B.充分而不必要的条件
C.必要而不充分的条件
D.既不充分也不必要的条件
命题意图: 本题主要考查两个函数的加法代数运算后的单调性以及充分条件和必要条件的相关知识.
解 先证充分性:因为f(x),g(x)均为偶函数, 所以f(x)f(x),g(x)g(x),有
h(x)f(x)g(x)f(x)g(x)h(x),
所以 h(x)为偶函数.
反过来,若h(x)为偶函数,f(x)g(x)不一定是偶函数.如h(x)x2,f(x)x,g(x)x2x,故选B. 方法二:可以选取两个特殊函数进行验证. 故选B
点评:对充要条件的论证,一定既要证充分性,又要证必要性,二着缺一不可.同时,对于抽象函数,有时候可以选取特殊函数进行验证.
5.函数的图象与性质
函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,读者要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.此类题目还很好的考查了数形结合的解题思想.
x例9.(2006年山东卷)函数y=1+a(0(A) (B) (C) (D) 命题意图: 本题主要考查对数函数的图象,互为反函数图象间关系及对数的运算性质等知识.
Copyright © 2019- jqkq.cn 版权所有 赣ICP备2024042794号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务