教学目标:
1、经历从生活情境到方程模型的建构过程。
2、理解方程概念,感受方程思想。
3、通过观察、描述、分类、抽象、概括、应用的学习活动过程达到学习水平的提高。
教学过程:
一、情境创设,初建相等关系模型。
1、师出示天平图,
认识吗?
师:天平可以称出物体的质量是多少。
2、(媒体出示三幅图)下面的三幅图中,哪一幅能称出两只苹果的质量?
(左右倾斜各一幅,平衡的一幅。图略)
学生会选择图3,老师顺着学生的思路出示图3天平平衡图
图3为什么能称出两只苹果的质量?
你能用一个式子表示出天平两边物体的质量关系么?
100+100=200
图1和图2为什么不能称出两只苹果的质量呢?
你也能用一个式子表示出天平两边物体的质量关系吗?
100+100>100、100+100<500
3、三个式子都是表示物体之间质量的关系,数学上把这样表示两边相等的关系的式子叫做等式。
你的小脑袋里有等式吗?说一个试试。
除了用加法表示的还有不一样的吗?(师板书学生说的其它的一些式子)
师:没想到,同学们对等式是这么的熟悉。
二、借助基础,拓展等式外延。
1、下面的几幅图中,天平两边物体的质量关系,哪些可以用等式表示?能表示的试着把它写下来,不能的思考可以用一个什么样的式子表示呢?
(书上四幅图略)
选一个等式说一说它表示什么意思?
天平两边物体的质量关系,一种是用语言表达,一种是用数学式子表示,你愿意选择哪一种?说说你的理由。(突出简洁、清楚)
2、师:的确,这样的一些数学式子能清楚、简洁地表示出天平左、右两边物体质量之间的关系。
3、比较:现在写的这些等式与刚才我们说的那些等式有什么不同吗?
突出含有未知数的等式
这些含有未知数的等式你见过吗?
生:没见过;也可能见过,如:用字母表示数中、求未知数x等。
三、进一步拓宽对等式的理解。
1、顺着学生的思路组织教学:李老师就为同学们准备了一些生活中同学们常见的一些现象,仔细看一看,这些生活中的现象之间的关系是不是也能用含有未知数的等式来表示呢?
(师出示四幅生活情境图)
(1)铅笔盒与笔记本共20元。
(2)借出的书与剩下的书共150本。
(3)3瓶相同的色拉油,每瓶x元,共8元。
三、明确特征,归纳概念。
其实呀,数学上给这样一些含有未知数的等式起了个很特别的名字叫方程,这就是我们今天要研究的方程的意义。(板书)
揭示数学上我们把含有未知数的等式叫做方程。
四、深刻领悟,挖掘内涵。
1、黑板上的其它式子为什么不是方程?
2、师:现在同学们知道什么是方程了吗?下面哪些是等式,哪些是方程?(是等式的男生举手,是方程的女生举手)
36-7=29、60+x>70、8+x
6+x=14、7+15=22、5y=40
活动结束了,但思考却刚刚开始,就等式和方程的关系你现在有什么话想说的吗?
(在活动中理解等式与方程的关系)
五、实践应用,拓展外延。
1、你能看图列出方程吗?
图1:天平(2x=500)
图2:四个物体16.8元
图3: 两杯水共有450毫升
2、从文字表述中找出方程
(1)小明从家到学校有500米,他每分钟走50米,走了x分钟。
(2)张师傅每天做x个零件,用了6天做了780个零件。
(3)王涛放学回家后,去商店买了3本精装笔记本,每本y元。他付给售货员阿姨20元,找回2元。
3、李老师头脑中有一幅图,我把它用方程表示了出来,猜一猜,老师头脑中可能会是一幅什么样的图?
出示:5x=200(可提示:如天平图等)
个别交流的基础上同桌互说。
六、全课总结:学习到现在你有哪些收获?
从不能用方程表示到能用方程表示图中的数量关系的一种演变。
图1:买4个小熊猫玩具,每个x元,120元不够
图2:买3个,每个x元,120元还不够
图3:买2个,每个x元,120元正好
延伸:使两只水杯一样多你能有哪些办法?用方程表示,你能吗?
因篇幅问题不能全部显示,请点此查看更多更全内容