1. 点共线的证明
点共线的通常证明方法是:通过邻补角关系证明三点共线;证明两点的连线必过第三点;证明三点组成的三角形面积为零等。n(n≥4)点共线可转化为三点共线。A组
1. 由矩形ABCD的外接圆上任意一点M向它的两对边引垂线MQ和MP,向另两边延长线引垂线MR,MT。证明:PR与QT垂直,且它们的交点在矩形的一条对角线上。
2. 在△ABC的BC边上任取一点P,作PD∥AC,PE∥AB,PD,PE和以AB,AC为直径而在三角形外侧所作的半圆的交点分别为D,E。求证:D,A,E三点共线。
3. 一个圆和等腰三角形ABC的两腰相切,切点是D,E,又和△ABC的外接圆相切于
F。求证:△ABC的内心G和D,E在一条直线上。
4. 设四边形ABCD为等腰梯形,把△ABC绕点C旋转某一角度变成△A’B’C’。证明:线段A’D, BC和B’C的中点在一条直线上。
5. 四边形ABCD内接于圆O,对角线AC与BD相交于P。设三角形ABP,BCP,CDP和DAP的外接圆圆心分别是O1,O2,O3,O4。求证:OP,O1O3,O2O4三直线交于一点。
6. 求证:过圆内接四边形各边的中点向对边所作的4条垂线交于一点。
7. △ABC为锐角三角形,AH为BC边上的高,以AH为直径的圆分别交AB,AC于
M,N;M,N与A不同。过A作直线lA垂直于MN。类似地作出直线lB与lC。证明:直
线lA,lB,lC共点。
8. 以△ABC的边BC,CA,AB向外作正方形,A1,B1,C1是正方形的边BC,CA,
AB的对边的中点。求证:直线AA1,BB1,CC1相交于一点。
9. 过△ABC的三边中点D,E,F向内切圆引切线,设所引的切线分别与EF,FD,DE交于I,L,M。求证:I,L,M在一条直线上。
B组
10. 设A1,B1,C1是直线l1上的任意三点,A2,B2,C2是另一条直线l2上的任意三点,A1B2和B1A2交于L,A1C2和A2C1交于M,B1C2和B2C1交于N。求证:L,M,N三点共线。
11. 在△ABC,△A’B’C’中,连接AA’,BB’,CC’,使这3条直线交于一点S。求证:AB与A’B’、BC与B’C’、CA与C’A’的交点F,D,E在同一条直线上(笛沙格定理)。
12. 设圆内接六边形ABCDEF的对边延长线相交于三点P,Q,R,则这三点在一条直线上(帕斯卡定理)
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- jqkq.cn 版权所有 赣ICP备2024042794号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务