数论篇一
1 (附中考题)
有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2 (101中学考题)
如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数 是__。
3(附中考题)
甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.
那么甲最小是____。 4 (附中考题)
下列数不是八进制数的是( ) A、125 B、126 C、127 D、128
预测
1.在1~100这100个自然数中,所有不能被9整除的数的和是多少? 预测
2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。2004年元旦三个网站同时更新,下一次同时更新是在____月____日? 预测
3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是______.
数论篇二
1 (清华附中考题)
有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____. 2 (三帆中学考题)
140,225,293被某大于1的自然数除,所得余数都相同。2002除以这个自然数的余数是 . 3 (附中考题)
某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.
4 (101中学考题)
一个八位数,它被3除余1,被4除余2,被11恰好整除,已知这个八位数的前6位是257633,那么它的后两位数字是__________。 5 (实验中学考题)
(1)从1到3998这3998个自然数中,有多少个能被4整除?
(2)从1到3998这3998个自然数中,有多少个各位数字之和能被4整除?
预测
1. 如果1=1!,1×2=2!,1×2×3=3!……1×2×3×……×99×100=100!那么1!+2!+3!+……+100!的个位数字是多少? 预测
2.(★★★★)公共汽车票的号码是一个六位数,若一张车票的号码的前3个数字之和等于后3个数字之和,则称这张车票是幸运的。试说明,所有幸运车票号码的和能被13整除。
数论篇一答案: 1 (附中考题) 【解】:6
2 (101中学考题)
【解】:设原来数为ab,这样后来的数为a0b,把数字展开我们可得:100a+b=9×(10a+b),所以我们可以知道5a=4b,所以a=4,b=5,所以原来的两位数为45。
3 (附中考题)
甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。
【解】:题中要求丙与135的乘积为甲的平方数,而且是个偶数(乙+乙),这样我们分解135=5×3×3×3,所以丙最小应该是2×2×5×3,所以甲最小是:2×3×3×5=90。
4 (附中考题)
【解】:八进制数是由除以8的余数得来的,不可能出现8,所以答案是D。
数论篇二答案: 1 (清华附中考题)
【解】:处理成余数相同的,则888、518-7、666-10的余数相同,这样我们可以转化成同余问题。这样我们用总结的知识点可知:任意两数的差肯定余0。那么这个自然数是
888-511=377的约数,又是888-656=232的约数,也是656-511=145的约数,因此就是377、232、145的公约数,所以这个自然数是29。
2 (三帆中学考题)
【解】:这样我们用总结的知识点可知:任意两数的差肯定余0。那么这个自然数是293-225=68的约数,又是225-140=85的约数,因此就是68、85的公约数,所以这个自然数是17。所以2002除以17余1
3 (附中考题)
【解】:“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。 4 (101中学考题)
【解】:设后面这个两位数为ab,前面数字和为26除以3余2,所以补上的两位数数字和要除以3余2。同理要满足除以4余2;八位数中奇数位数字和为(2+7+3+a),偶数位数字和为(5+6+3+b)这样要求a=b+2,所以满足条件的只有86 5 (实验中学考题) 【解】1、[ ]=999个。
2、对于每一个三位数×××来说,在1 ×××、2×××、3 ×××和4×××这4个数中
恰好有1个数的数字和能被4整除.所以从1000到4999这4000个数中,恰有1000个数的数字和能被4整除.
同样道理,我们可以知道600到999这400个数中恰有100个数的数字和能被4整除,从200到599这400个数中恰有100个数的数字和能被4整除.
现在只剩下10到199这190个数了.我们还用一样的办法.160到199这40个数中,120到159这40个数中,60到88这40个数中,以及20到59这40个数中分别有10个数的数字和能被4整除.而10到19,以及100到1t9中则只有13、17、103、107、112和116这6个数的数字和能被4整除.
所以从10到4999这4990个自然数中,其数字和能被4整除的数有1000+100×2+10×4+6=1246个.
[方法二]:
解:第一个能数字和能够被4整除的数是13,最后一个是4996,这中间每4位数就有一个能够满足条件,所以4996-13=4983,4983÷4=1245(个),而第一个也是能够满足的,所以正确答案是
1245+1=1246(人)或者就直接用4996-12=4984,用4984÷4=1246(个) [拓 展]:1到9999的数码和是等于多少?
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- jqkq.cn 版权所有 赣ICP备2024042794号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务