您好,欢迎来到吉趣旅游网。
搜索
您的当前位置:首页湘教版《双曲线的定义及其标准方程》教案

湘教版《双曲线的定义及其标准方程》教案

来源:吉趣旅游网

双曲线的定义及其标准方程

教学目标

1.通过教学,使学生熟记双曲线的定义及其标准方程,理解双曲线的定义,双曲线的标准方程的探索推导过程.

2.在与椭圆的类比中获得双曲线的知识,培养学生会合情猜想,进一步提高分析、归纳、推理的能力.

3.培养学生浓厚的学习兴趣,独立思考、勇于探索精神及实事求是的科学态度.

教学重点与难点

双曲线的定义和标准方程及其探索推导过程是本课的重点.定义中的差的绝对值ac的关系的理解是难点.

教学过程

师:椭圆的定义是什么?椭圆的标准方程是什么?

(学生口述椭圆的两个定义,标准方程,教师利用投影仪把椭圆的定义、标准方程和图象放出来.)

师:椭圆的两个定义虽然都是由轨迹的问题引出来的,但所采用的方法是不同的.定义二是在认识上已经把椭圆和方程统一起来,在掌握了坐标法基础上利用坐标方法建立轨迹方程.这是通过方程去认识轨迹曲线.定义中设定的常数2a|F1F2|=2c,它们之间的变化对椭圆有什么影响?

生:当a=c时,相应的轨迹是线段F1F2.当ac时,轨迹不存在.这是因为ac的关系违背了三角形中边与边之间的关系.

师:如果把椭圆定义中的平面内与两个定点F1F2的距离的和改写为平面内与两个定点F1F2的距离的差,那么点的轨迹会怎样?它的方程又是怎样的呢?

(师生共同做一个简单的实验,请同学们把准备好的实验用具拿出来,一起做实验.教师把教具挂在黑板上,同时板书:平面内与两个定点F1F2的距离之差为常数的点的轨迹是什么曲线?边画、边操作、边说明.)

师:做法是:适当选取两定点F1F2,将拉锁拉开一段,其中一边的端点固定在F1处,在另一边上截取一段AF2(F1F2),作为动点M到两定点F1F2距离之差.而后把它固定在F2处.这时将铅笔(粉笔)置于P处,于是随着拉锁的逐渐打开铅笔就徐徐画出一条曲线;同理可画出另一支.如图2-36

师:通过这个实验,你们发现了什么?

生:所画的曲线不是椭圆,是两条相同的曲线,只是位置不同.其原因都是应用平面内与两个定点的距离之差|MF1|-|MF2|(|MF2|-|MF1|)是同一常数的条件画图的.

师:所画出图象与椭圆完全不同,能说出属于哪一类曲线吗?

生:属于双曲型曲线.

师:很好!我们把这类曲线就叫做双曲线.我们思考以下几个问题:

1|MF1||MF2|哪个大?

生:不一定.当点M在双曲线右支时,有|MF1||MF2|,当点M在双曲线左支时,|MF1||MF2|

师:2.点M与点F1F2距离之差是否就应是|MF1|-|MF2|

生:未必是.也可以是|MF2|-|MF1|

师:如何表示这两种情况?

生:若要同时表示这两种情况,正确的表示是应||MF1|-|MF2||.无论哪种情况总是成立的.

师:3.点M与点F1F2的距离之差的绝对值与|F1F2|的大小关系怎样?

生:由三角形的两边之差小于第三边可知,应是小于|F1F2|.否则作不出图形.

在上述讨论的基础上,引导学生概括出双曲线的定义,教师板书课题.

(学生试叙述,教师协助完成.)

一、双曲线的定义

平面内与两个定点F1F2的距离的差的绝对值是常数2a(a0且小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,这两个焦点间的距离叫做焦距,记作2c(c0)

通过学生自己动手画图,得到了双曲线定义,同时进一步让学生在实验中观察定义中两个常数间大小关系对于动点M的轨迹的影响.激发学生探求知识的兴趣,调动学生的求知的渴望.师生共同归纳:

师:由定义知||MF1|-|MF2||=2a|F1F2|=2c,并设动点为M,请大家讨论以下几个问题:

(1)0ac时,动点M的轨迹是什么?

学生略思考一下,回答出是双曲线.

(2)a=c时,动点M的轨迹是什么?

分析  a=c,也就是||MF1|-|MF2||=2a=2c,如图2-37所示:

可以看出,动点M的轨迹是分别以点F1F2为端点,方向指向F1F2外侧的两条射线.

(3)ac0时,动点M的轨迹是什么?

由前面归纳已知动点M的轨迹不存在.这是因为ac的关系违背了三角形中两边之差小于第三边的性质.

二、双曲线的标准方程

师:现在来研究双曲线的方程.我们可以参照求椭圆的方程的方法来求双曲线的方程.首先建立直角坐标系,即以两定点连线为x轴,两定点的垂直平分线为y轴.然后,观察双曲线的特征,猜测双曲线方程的结构与椭圆方程的结构是否有类似之处?(如图2-38)

当点M移动到x轴上点A1A2时,如何求点A1A2的坐标?

生:点A1A2是关于原点对称的,所以|A1A2|=|F1F2|-|F1A1|-|F2A2|=|F1F2|-2|F2A2|=|F1A2|-|F2A2|=2a

所以点A1A2的坐标分别是(-a0)(a0)

师:请同学们对照椭圆的定义及其标准方程推导过程导出双曲线的标准方程.

生:1.建立直角坐标系.

2.设双曲线上任意一点的坐标为M(xy)|F1F2|=2c,并设F1(-c0)F2(c0)

3.由两点间距离公式,得

4.由双曲线定义,得

|MF1|-|MF2|=±2a,即

5.化简方程

两边平方,得

化简得:

两边再平方,整理得

(c2-a2)x2-a2y2=a2(c2-a2)

(为使方程简化,更为对称和谐起见.)

2c-2a0,即ca,所以c2-a20

c2-a2=b2(b0),代入上式,得

b2x2-a2y2a2b2

也就是

师:利用椭圆标准方程推导类比地推导出双曲线的标准方程,它同样具有方程简单、对称,具有和谐美的特点,便于我们今后研究双曲线的有关性质.这一简化的方程称为双曲线的标准方程.

结合图形再一次理解方程中ab0的条件是不可缺少的.b的选取不仅使方程得到了简化、和谐,也有实际的几何意义.具有c2=a2+b2与椭圆中a2=b2+c2的不同之处.

师:与椭圆方程一样,如果双曲线的焦点在y轴上,这时双曲线的标准方程形式又怎样呢?我们可以从所画的图形上观察,对比来看一看互相间的转化.(2-39、图2-40)

生:从图形的对称来看,只要交换一下x轴、y轴的名称,然后逆时针翻转90°使之y轴向上、下,x轴水平放置即可得到焦点在y轴上的双曲线.

师:从方程上来分析,只要将方程(1)xy互换就可以得到它的方程

此方程也是双曲线的标准方程.

师:如何记忆这两个标准方程?

生:双曲线的方程右边为1,左边是两个完全平方项,符号一正一负,为正的项相应的坐标轴为实轴,焦点在该轴上,且分母为a2.负项相应的坐标轴为虚轴,且分母为b2

师:用一句话概括以正负定实虚

三、举例

已知两点F1(-40)F2(40),曲线上的点到两个焦点的距离之差为6,求曲线方程.

  由焦点坐标可知c=42a=6

所以a=3,而b2=c2-a2=16-9=7

所以,所求的双曲线方程为

求满足下列条件的双曲线方程

1.若a=4b=3,焦点在x轴上;

  (1)因为a=4b=3,并且焦点在x轴上,

所以所求的双曲线方程为

(2)由题意设双曲线的标准方程为:

所以代入双曲线方程得

所以

b2=16

所以所求的双曲线的标准方程为

1和例2可由学生自行解答,黑板上板演,并对照检查对错.

四、小结(师生共同参与完成)

1.知识方面

双曲线的定义和双曲线的标准方程;方程中的3个常数abc间的关系:c2=a2+b2

理解以正负定实虚的意义,会确定实轴、虚轴、焦点所在位置,会求双曲线的标准方程.

2.在教学中体会到数学知识的和谐美,几何图形的对称美.

五、作业:第XXXX题.

六、课后思考题

2.结合图形的演示,试讨论||MF1|-|MF2||=2a

Copyright © 2019- jqkq.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务